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The theoretical formulation of x-ray resonant magnetic scattering from rough surfaces and interfaces is given
for specular reflectivity. A general expression is derived for both structurally and magnetically rough interfaces
in the distorted-wave Born approximation as the framework of the theory. For this purpose, we have defined a
“structural” and a “magnetic” interface to represent the actual interfaces. A generalization of the well-known
Nevot-Croce formula for specular reflectivity is obtained for the case of a single rough magnetic interface
using the self-consistent method. Finally, the results are generalized to the case of multiple interfaces, as in the
case of thin films or multilayers. Theoretical calculations for each of the cases are illustrated with numerical
examples and compared with experimental results of magnetic reflectivity from a Gd/Fe multilayer.
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[. INTRODUCTION ignored or taken into account in @ hocmanner. In prin-
ciple, representing roughness in terms of a graded magneti-

X-ray reflectivity and offspecular diffuse scattering meth- zation at the interface and using slicing methods could en-
ods have been widely applied over the last decade to chaable one to calculate the effect of magnetic roughness on
acterize the morphology of rough surfaces and interfacespecular reflectivity at the expense of considerable computa-
particularly with the availability of sources of ever- tional effort. Rdiisberger has developed a matrix formalism
increasing brilliance for x-ray radiation. Similar techniques(originally developed for nuclear resonant x-ray reflectivity
using neutron beams have also become widespread, particitem which specular reflectivity incorporating roughness can
larly for the study of magnetic multilayers. In the case of xbe calculated® It was not considered in his paper, however,
rays, however, element-specific information regarding thehat the magnetic interfaces can have different roughnesses
magnetic structure can be readily obtained by tuning the phdrom the structuralchemical ones. In this paper, we define
ton energy to that of ah edge(in the case of transition or separately a structural and a magnetic interface to represent
rare-earth meta)5? or of an M edge (in the case of the actual interfaces and present analytical formulas taking
actinide$.>* The resonant enhancement of the scattering bynto account both interface roughnesses, which provide much
magnetic atoms at such energies can result in a large enoudgster computational method than the slicing methods and
signal to be comparable to the dominant charge scatteringhow good agreement with established formulas for chemical
Resonant x-ray scattering at tKeedges of transition metdls interface roughness.
has also been used to obtain information about the magnetic Methods were developed earlier to calculate analytically
structure, although the enhancement is not as large. Resonahe specular component of the charge scattering of x rays by
magnetic scattering corresponds to the real part of the scateugh surfaces and interfaces using the Born approximation
tering amplitude, while théabsorptive imaginary part gives (BA) and the distorted-wave Born approximation
rise to x-ray magnetic circular dichrois@MCD), which ~ (DWBA).2%?' The BA results were extended to magnetic in-
has been used to obtain the values of spin and orbital mderfaces in an earlier publicati®hand have already been
ments in ferromagnetic materials. Detailed descriptions ofpplied to interpreting x-ray resonant magnetic specular re-
the formalism for the interaction of x rays with magnetically flectivity measurements from magnetic multilay&ts>1’
polarized atoms have been given in the literafir@,from However, the BA or the kinematical approximation breaks
which a complete description of magneto-optic phenomenaown in the vicinity of the critical angle and below, since it
in the x-ray region can be obtained and applied. neglects the x-ray refraction. On the other hand, the DWBA

Several resonant x-ray specular reflectivity experimentsakes account of dynamical effects, such as multiple scatter-
have been performed to obtain the magnetization within théng and the x-ray refraction, which become significant for
layers of magnetic multilayers'*~1" The analysis of these smaller angles close to the critical angle and even for greater
results has generally used recursive matrix techniques devedngles at the resonant energies or with soft x rays. We
oped for magneto-optics in the case of resonant x-raypresent here the generalization of the DWBA to the case of
reflectivity® In general, roughness at the interfaces has beeresonant magnetic x-ray reflectivity from rough magnetic
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random disordering of the magnetic moments near the inter-
face. Clearly, in general, correlation will exist between the
height fluctuations of the chemical interface and the fluctua-
tions of the spins, but a quantitative formalism to account for
this in detail has not yet been developed. We make here the
simplifying assumption that the ferromagnetic moments near
the interfacgor at least their components in the direction of
the ferromagnetic moments deep within the FM layer, i.e.,
the direction of average magnetizatibh) are cut off at a
FIG. 1. Schematic representation of scattering geometry anflathematical interface, which we call the magnetic interface
sketch of the chemicalor structural [z.(x,y)] and magnetic and which may not coincide with the chemical interface,
[zq(x,y)] interfaces, which can be separated from each other by agither in its height fluctuations or over its average position,
average amounk. Grazing angles of incidence,) and scattering  €.9., if @ magnetic “dead layer” exists between the two in-
(8;), the wave vectork; andk;, and the photon polarization vec- terfaces(see Fig. 1 The disorder near the interface is thus
tors of incidence (é“:m) and scattering&,_,, ) are illustrated. represeqted by height fluctgations_of this magnetic interfaqe.
Small arrows represent the possible orientations of the magneti€he basis for this assumption, which is admittedly crude, is
moments around magnetic interfaces. that the short(i.e., atomig¢ length-scale fluctuations of the
moments away from the direction of the average magnetiza-
surfaces or interfaces. The principal complication is, howion give rise to diffuse scattering at fairly large scattering
ever, that we now have to deal with a tendcather than Wave vectors, whereas we are dealing here with scattering at
scalay scattering length, or equivalently an anisotropic re-& small wave vectog, which represent the relatively slow
fractive index for x ray$® This leads, in general, to two Variations of the average magnetization density. The actual
transmitted and two reflected waves at each interface for afnterface can be then considered as really composed of two
bitrary polarization, which complicates the DWBA formal- interfaces, a chemical interface and a magnetic interface,
ism. each with their own average height, roughness, and correla-
The plan of this paper is as follows. In Sec. II, we discusstion length, and, importantly, in general possessing correlated
a simple conceptual model for a magnetic interface and it§eight fluctuations.
relationship to the chemicdi.e., structurgl interface and
define the appropriate magnetic roughness parameters. In 1. RESONANT MAGNETIC X-RAY SCATTERING
Sec. lll, we discuss théknown) scattering amplitudes for AMPLITUDE

resonant x-ray scattering and their relationship to the dielec- . . .
The amplitude for resonant magnetic scattering of x rays

tric susceptibility to be used in the DWBA. In Sec. IV, we ) . .
b y has been derived by Hanne al.® and a discussion of the

present the derivation of the scattering in the DWBA for a | f i be found in th iew by Hill and
single interface with both structural and magnetic rough-genera ormalism may be found in the review by Hill an

9 . .
nesses. In Secs. V and VI, we derive the formulas for specd\-/'CMorrOW' There are two cases of practical importance,
lar reflectivity from a magnetic interface using the self- namely, dipole and quadrupole resonances. We shall restrict

consistent method in the framework of the DWBA and our_selyes here to the most commonIyIL_Jsed dipole resonance,
discuss numerical results. Finally, in Secs. VII-IX, we dis—WhICh is related to the. edges pf transition metals and rare-
cuss the extension of the formalism to the case of the speCl‘f-arth atoms. Th_e tensor amplitude for scattefipg from a
lar reflectivity from magnetic multilayers and present some"'2gnetic atom is given by

numerical results with experimental data from a Gd/Fe 3\

multilayer. In the following pape?® we derive the formulas E e?ﬂfaﬁem: fot =—(FytFqi_q) (é;k .é])
for the diffuse(off-speculay scattering from magnetic inter- @8 87
faces in both the BA and the DWBA.

3\ o
= g(Fll_Flfl)(ef Xg)-M
II. MODEL FOR MAGNETIC INTERFACE

Consider an interface between a ferromagnetic medium - 8—)\(2F10—F11—F1,1)(é?~|\7I)(é-|\7|),
and a nonmagnetic mediufwhich could also be free space ™
Due to the roughness of this interface, the magnetic moments (3.1
near the interface will find themselves in anisotropy and ex- A ) ] o
change fields, which fluctuate spatiallsee Fig. 1 wheree , € are, respectively, the unit photon polarization

This will produce disorder relative to the preferred ferro- vectors for the incident and scattered waviek,is a unit
magnetic alignment within the magnetic medium. A similar vector in the direction of the magnetic moment of the atom,
situation can arise at an interface between a ferromagnetic is the x-ray photon wavelengtliy is the usual Thomson
medium (FM) and an antiferromagnetic mediufiFM), (charge scattering amplitude [fo=—ro(Z+f" —if")],
where there is a strong antiferromagnetic coupling betweemwnherer , is the Thomson scattering lengte’(mc?), Z is the
spins in the FM and the AFM. Random steps will then pro-atomic numberf’(<0) andf”(>0) are the real and imagi-
duce frustration in the vicinity of the interface, resulting in nary nonresonant dispersion correctioRgy, is the resonant
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scattering amplitude, as defined in ' Ref. 6, and has the resdA/e note that the magnetization gives the dielectric tensor the
nant denominatoE,..—E—iI'/2, which provides the reso- same symmetry as in conventional magneto-optic theory,
nance when the photon ener@yis tuned to the resonant namely, an antisymmetric component linear in the magneti-
energyE,.sclose to the absorption edges. The lifetime of thezation.

resonancd’ is typically 1-10 eV, so that the necessary en-

ergy resolution is easily achievable at synchrotron radiation |v. THE DISTORTED-WAVE BORN APPROXIMATION

beamlines(We assumed thai, the wave-vector transfer, is FOR A SINGLE MAGNETIC INTERFACE
small enough here that the atomic form factor can be taken o
as unity) Equation(3.1) has both real and imaginaiy.e. The results for specular reflectivity in the BA have been

absorptivé components. The latter gives rise to the well- derived in Ref. 22 and will be also summarized briefly in

known phenomenon of x-ray magnetic circular or linear di-connection with the cross section in the following paper.
chroism, whereas the real part gives rise to the scatteringi€re we discuss the scattering in terms of the DWBA. While

Equation(3.1) yields his is more complicated algebraically, it provides a better
description than the simple kinematical approximation or BA
in the vicinity of regions where total reflection or Bragg

fap=A8us—i1BY €,5,M,+CMMyg, (3.2 scattering occurs. This treatment is a generalization of that

v used in Ref. 20 for charge scattering. The wave equation for

where electromagnetic waves propagating in an anisotropic me-
dium with a dielectric susceptibility tensor given by E8.5)

3\ may be written as
A=fo+ E(Fll_F Fi-1),

; [(V24+K3) 8,5~ VaVs+KixaplEp(r)=0

B= N (FiyFy_y)
8 W 171k (a,B=x,y,2), (4.1

N whereE(r) is the electric field vector.
C=g-(2F1=Fu—Fi1), (3.3 Consider a wave incident, as in Fig. 1, with wave vector
ki in the (x,z) plane k; ,=0) and polarizationu(u=o or
anda, B denote Cartesian components, ang, is the an- ), from a nonmagneti¢isotropig medium for whichy,,z

tisymmetric Levi-Civita symbol é,,,=€,,,=€,xy=1, €,y = X09,5 ONto a smooth interface at=0 with a magnetic
= €yx;= €,9x= —1, all othere,z,=0). The dielectric sus- medium, for whichy, is constant forz<0.
ceptibility of a resonant magnetic medium is given by Let us write forz<O,
- )
4 XaB_Xlaaﬁ+Xa ' (42)
Xz o) =—- (1) f (1), (3.4 2 .
kg where the termy,,; is the part that specifically depends on

the magnetizatioM, as defined in Eq(3.5. The incident

whereko=2m/\, ny(r) is the local number density of reso- \yave (chosen for convenience with unit amplitudeay be
nant magnetic atoms, and the variationfgf(r) with r re-  \\ritten as

flects the possible positional dependence of the direction of

magnetizatiorM. The total dielectric susceptibility is given E(n=e,elki. (4.3
by [ (d
This incident wave will, in general, give rise to two specu-
A larly reflected wavegwhere the indexu refers too or 7
Xag(f)Zﬁ {=po(N)ro+Any(r)}d,s polarization and two transmittedrefracted waves in the
0 magnetic medium. The complete solution for the electric
field in the case of the smooth magnetic interface is then
—iBNy(1) Y €apM (1) given by
Y
_ 2 aikjer O) (L Vo alki-r
FCn(M (M 40|, 35 E (1) =6.e +V=§;',ﬁ RO(k)eei ", z>0,
where po(r) represents the electron number density arising _ O/ \a aikl()-r
from all the other nonresonant atoms in the medium modified _szl,z T/ (ki)gemit,  z<0, (4.4

by their anomalous dispersion corrections when necessary. _ _
Using the constitutive relationship between the local dielecwherek; is the specularly reflected wave vector in the non-

tric constant tensoe,, z(r) and x,4(r), magnetic mediumy denotes the polarization of the appro-
priate reflected component, the indgg=1,2) defines the
€ap(1) =045+ Xap(r). (3.6 component of the transmitted wave in the magnetic resonant
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medium with polarizationéj (éj:”: &) and &?), respec- angled;). We should also mention that, even whénis not

tively, as defined in Appendix YA andk!(j) the appropriate parallel to thex axis in Fig. 1, the expressions derived in the
wave vector for that transmitted wave. The polarization vec-appendices can be still applied by considering only xhe
tors e may be real or complex allowing for linear or ellipti- component of the magnetization vectdr. This is because
cally polarized waves. We denote such states in @g) they andz components oM contribute negligibly to the
quantum mechanically bjk; , ). scattering in comparison with the dominant fact&
R and T() denote the appropriate reflection and trans-= (3X\/8m)(F1,—F-4) in Eq. (3.2) at small angle¥ when
mission coefficients for the smooth surface and are expresseélisi—F1-1/>|2F 10— F11—F1-4|, which is generally satis-
in terms of 2x 2 matrices using the polarization bases for thefied for transition-metal and rare-eaithedges’
incident and reflectedor transmittegl waves. The polariza- ~ We note that the continuity of the fields parallel to the
tion basis is given by&,, &.), as shown in Fig. 1, for the 'Mterface requires that
waves in the nonmagnetic medium aref{, &), as de- (k)= (kD) =[Ki()]), (4.5
fined in Appendix A, for those in the magnetic resonant me-
dium, respectively. The convention in which the polarizationWhere () and[ ]j denote the vector component parallel to

state of the reflectetbr transmitted wave precedes that of the interface.

the incident wave is used for the subscriptsRﬁﬂf andT(© _ We now discgss the structurally and magnetically rough
g interface. For this purpose we shall assume that the average

and the Greek and Roman letters are used for the polarizatign_. o :
: . . ; eight (along z) of the structural and magnetic interfaces is
states in the nonmagnetic and magnetic medium, respe

the same, ie., we i h f ic dead
. - : (0) (0) , e, gnore the presence of a magnetic dea
tively. The explicit expressions aR,,, and Tj,’ for small layer. This may be treated within the DWBA as simply an-

tibilit d1 ial directi f th larizati ther nonmagnetic layer and thus discussed within the for-
susceptibility and for special directions of the polanzalion , ajism for treating multilayers as discussed in Sec. VII. We

and magnetizatiofi.e., M||x as shown in Fig. lare givenin  can write
Appendix A.

We should mention, however, that these specific condi- Xap(1) = X Q)+ A (1) + AT (r), (4.9
tions considered in Appendix fand also in all other appen- where
dixes are reasonably satisfied for hard- and medium-energy
x rays and also for soft x rays around transition-metal XA =x084.p. 2>0=x18,45+x7, 2<0,
edges with small angle@.e., when6i2<1 for the incidence 4.7

ACs(N=(x1—x0)8up for 0<z<éz(xy) if 6z(x,y)>0
=—(X1—X0)0ap for 6z(xy)<z<0 if 6z(x,y)<0
=0 elsewhere, (4.8

and

ATy =xZ) for 0<z<dzpm(xy) if  8zpm(x,y)>0
==X, for 8zn(xy)<z<O0 if 8zy(x,y)<0

=0 elsewhere, (4.9

5z4(x,y) and 8z,,(x,y) define the structuraichemical and ~ where (—k}) is the wave vector of the wave specularly re-

magnetic interfaces, respectively. flected from (k;), and[ —k}(j)] is the wave vector of one
We may also define the time-reversed function corre-of the two transmitted waves in the medium emanating from

sponding to a wave incident on the interface with vector (—k;) incident on the surface, as shown in Fig. 2. Note that,

(—k;) and polarizatiorwv as for consistency with the conventions used in E44), the
polarization vectors in Eq4.10 are defined in the ordinary
ET N=e ek 4+ RO* (k. )e eik;*-r, >0 coordinate lsystem wherg th(_elr phases are conS|dered_ along
(_kf’”)( )=e A:EU,W w (ko8 the left-to-right direction in Fig. 1. Otherwise, the polariza-

tion vectors in Eq(4.10 should be replaced by their com-

_ TO* (| "eeiktf*(j).r' 7<0, 41 plex conjugates. N
j:21,2 v (—koe (4.19 We have also the conditions
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(ko= (kpy=Lki(}]}- (4.1 fr ke
The DWBA then yields the differential cross section for scat- el T =
tering by the rough interface fronk{,x) to (k;,v) as k; N k; X
£
do 1 ) 27T \
I |2 e t t
90 16772<|7*| ) (4.12 - kf k!

Where’]’“:(kf ,v|TIk; , ) is the scattering matrix element, FIG. 2. Schematic representation of an ideal interface with un-
and(---) in Eq. (4.12 denotes a statistical averaging over disturbed state&(k;) andE'(—ky). Note two possible waves for
random fluctuations at the interface. Following Ref. 20, weeach of the reflected and transmitted wave vectors.
split the cross section into two parts:
where R, ,(k;) denotes the reflection coefficient for the
do 1 _ 1 _ _ rough surface.
a0 " 16 T2+ p[<|ﬁ'|2>_|<f'>|2]- (413 On the other hand, for the reverse case where a wave is
m 4 incident from a resonant magnetic medium to a nonmagnetic

The first term in Eq(4.13 represents the coherespeculay ~ (isotropig medium, similarly to Eq.(4.15, the scattering
part of the scattering, which corresponds to a statistical aviatrix element for the smooth surface can be shown to be
eraging of the scattering amplitude, and the second term cor- 0
responds to the incohereftiffuse) scattering. In this paper,  ko(—K{.j'[x?[k; ,i)=4iv4kiz(])Rfrj)(ki)5kixkfx5kiykfy,
we shall deal with the first term only, while the diffuse scat- (4.17
tering will be addressed in the following pageér. _ _ _

The DWBA consists of approximating the scattering ma-Where the incoming wave from the resonant magnetic me-

trix element by the expression dium [k;,j) is used instead of the “pure” incoming wave
_ from the vacuurrE'M(r) in Eq. (4.3). The use of Eqs(4.15
(ke | Tk ) =K =k, v XV E}(r)) and(4.17) in Egs.(4.14) and(4.12) in the case of the smooth
surface and the derivation of the corresponding reflectivity in
+Ko(— ki, v[A%K; ) the usual manner, as discussed in Ref. 20, shows that Egs.

2, LT m (4.15 and(4.17) must be identically true. Similarly to Egs.

+ko( —ki, v|ATkj, ). (4.19 (4.15 and(4.16), the scattering matrix element for the rough

Here |Ei (r)) denotes the “pure” incoming wave in Eq surface between reversed layers can be also defined by anal-
u .

(4.3, |—kT,v) denotes the state in E@GL.10, and the matrix ogy from Eq.(4.17) as
element involves dot products of the tensor operayfs, ., N .
A%, and A™ with the vector fields(—k{ ,»| and (k; ,|. (k| TTki ) =41 Ak (DR (ki) O, B ey,
While (9 represents an ideal system with a smooth inter- (4.18
c m ; (0) ;
face, A" and A™ are perturbations on™ due to interface where R;/;(k;) denotes the reflection coefficient for the

roughnesses.
, . . rough surface between reversed layers.
For the smooth surface, only the first tensor is nonvanish- g y

ing, and, following Ref. 20, we can show from E@4.3) and
(4.10 that V. REFLECTION AND TRANSMISSION COEFFICIENTS

USING THE SELF-CONSISTENT METHOD

2, T (0)| =i
ko( —ki . v]x |EM(r)) To calculate specular reflectivity, we make an approxima-

tion in the spirit of Nevot and Croc¥.To evaluate the ma-
:iAkg5kikax5kiykny T}S)(—kf) trix elements in Eq(4.14) involving A ; andA7,;, we as-
) sume forE(k; ,u) in Eg. (4.4) the functional form forz>0
. @ 0 i) k]2 analytically contipued foz<0, while fo_r the time-reversed
X% € (X104t Xaﬁ)ep,ﬁjiocdze 1272, stateE"(—Kk;,v) in Eq. (4.10 the functional form forz<0
analytically continued t@>0. Then, bearing in mind that
(4.15  for specular reflectivitk;=k{ and using Eq(4.5), we obtain

= 2i Ak ,RO)(Ki) 8y, 5 .
for the statistically averaged amplitudé™),

iykfy’
where A is the illuminated surface area, aﬁlﬁ‘ij(ki) is the

reflection coefficient for the smooth surface, as defined ink3(—k{,»|ASMk;,u))
Eq. (4.4). The details of Eq4.15 are presented in Appendix
B. By comparison with Eq(4.15 for the smooth surface, the
scattering matrix element for the rough surface in &ql4
can be analogously defined by

=iAkg > TO(—ky)
j=12

ef A

3 c,me . )
(4.16 X 2 Mueflqu(n&c,m(x,y»_1]

<kf1V|7Tki 1lu>:2i~AkiZRv,u,(ki)5k- aB qu(J)

|xkfx

Sy

|ykfy’
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e* A&Ma The derivation of this is shown in Appendix D. For the mag-
+ > ROk)> e B netic interface, this simplified form for the reflection coeffi-
A=om op  Q2a]) cient does not have any analog. Nevertheless, at sufficiently
o large values ofy,, the reflectivity takes the familiar Gauss-
X [(e 19221 2%emCN)) — 17 (5D jan formR©e~ 7. However,o%, does not always take the
form predicted by the simple kinematical thediye., ag for
where o0 reflectivity, o2, for o—m reflectivity, and 3(o?
. . . . +o7,) for (1.—1_) in the case of circularly polarized x
i) =Ki(D) =Kz Ao =kia(D) =Kz, (52 raysr:llq)as we(s?]all sée in the numerical examp}llepshown below,
and AZ’;T is the value defined for €z< 6z ,, in Egs. (4.9 which provides a counterillustration of the rule that, at large
and (4.9. From Egs.(4.15—(4.16 and Eq.(5.1), we see d., the DWBA becomes identical to the Born approximation

that, at the specular condition, we can write E414) as or kinematical limit. o
For circularly polarized incident x rays witle. (k;)
R,,=RO+U,,+3 V, RO, 53  =le(k)*ie(k)]/\2, the reflection amplitudes far and
e TSR r  polarization are given by
where
Tk K %
U= o | (1~ R, 2
R TR NI {(’“ xo) (R )=R al 5.9
T |
i_
X ; ej*aew[e‘(l’z)qu(””g— 1] V2

whereR is the 2x 2 matrix reflection coefficient in Ed5.6).
, (5.9 The reflected intensities without polarization analysis for the

b3 et e, ale -1
ap outgoing beaml| = \|R,|?+|R,|?, can be then evaluated for

and replacingqs,, e, in U,, by d,,, e, producesV,,, . the opposite helicities of incident beams as
Here we made the customary Gaussian approximation for the
height fluctuationséz. ,(x,y), and o., o, are the root- I, —1_=21Im[Ry1Ri,+ RyR3,, (5.9

mean-squared structural and magnetic roughnesses, respec-
tively. Note that the correlation tertd,,, due to the rough- whereR;; is theij element of the X2 matrix R.
ness in the reflection coefficient contains only independent Since Parratt's recursive formula for multiple interfaces
contributions of chemical and magnetic roughnesses exncludes only reflection coefficients, its extension to the
pressed viac. and o, respectively. According to Eq. rough interface case does not need the transmission coeffi-
(4.13, the diffuse scattering must contain the cross-cient to account for interface roughness. On the other hand,
correlation component due to the te(i"|%). in our case where the fields are not scalars, the transmission
A better approximation than E¢5.3) may be obtained by coefficients are requisite to calculate recursiveé22matrix
using the rough-interface reflection coefficiét), instead of  formulas for multiple magnetic interfaces, which will be dis-
the smooth interfac®(’) in the wave functions of Eq$4.4  cussed in Sec. VII. For completeness, therefore, let us now
and (4.10, thus getting a self-consistent matrix equation incalculate the transmission coefficieft, from a rough inter-

terms of the 22 matricesR, U, V. This leads to face. In the spirit of Ref. 25, we assume fB(k;,u) and
0) ET(—k¢,j) the functional forms analytically continued both
R=R™+U+VR, (59 for z>0 and forz<0 as follows:
whose solution is
R=(1-V) Y(RO+U). (5.6) Ek )= > TOk)g.eki),  (5.10

j'=12

Similarly, for the reverse interface between upper resonant :
magnetic and lower nonmagnetic layers, we can have the
same solution as E¢5.6) from Eqgs.(4.17) and(4.18. The E"(—ks,j)= 2 TS,Q)*(—kf)éVe“k?'f, (5.12)
explicit expressions ob), V, R(®) matrices in Eq(5.6) for o
both cases are given in Appendix C.

For nonmagnetic interfaces, the matrices are all diagonakhere T‘V?)*(—kf) in Eq. (5.1) denotes the transmission
(o and 7 polarizations are decouplgdand it has been coefficient “from” a magnetic(anisotropi¢ medium “to” a
shown that Eq.(5.6) leads to the familiar Nevot-Croce nonmagnetigisotropio one, whose explicit form is given in

form?* for the reflection coefficient, i.e., Appendix A. For the smooth surface, the scattering matrix
o, element between the eigenstafes; ,j) and|k;,u) can be
R=R(Og2lkdlk;|oc (5.7  then written as
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K2(— kT IxXOk; ) Eq. (5.16, thus getting a self-consistent matrix equation in
terms of the 22 matrices,T, V', gives
- I Ak(z) 5kixkfx5kiykfy
T=TO+v'T, (5.189
x> TO(—kn > T (k) whose solution is
v j'

0 t T=(1-Vv) 1O, (5.19
X > €% (x16.5+xZes f dze k=K (107, . .
;’5 vl X10apt Xap)®p | Similarly, for the reverse interface between upper resonant
magnetic and lower nonmagnetic layers, we can also have
(512 the same solution as E¢5.19. The explicit expressions of

=41 AKL ()T (ki) 8k, Sk
V' andT(® matrices in Eq(5.19 for both cases are given in

M |ykfy’

whereT}f)(ki) is the transmission coefficient for the smooth Appendix C.
surface, as defined in E¢4.4). The details of Eqs(5.12) are For nonmagnetic interfaces, it is shown in Appendix D
given in Appendix B. that Eq.(5.19 reduces to
In comparison with Eq(5.12 for the smooth surface, the
scattering matrix element for the rough surface, as shown in T:T(O)e(1/2)(\kzlf\k‘ZI)Zvﬁ, (5.20

Eq. (4.14), can be analogously defined by
which has been found by Vidal and Vincéft.

(ke 1Tk ) = 41 ARG () Ty (k) S

|><kfx

5'( k il
iy~ fy
(5.13 VI. NUMERICAL EXAMPLES FOR A SINGLE MAGNETIC

. - SURFACE
where T; ,(k;) denotes the transmission coefficient for the

rough surface. We now illustrate numerical examples of the above for-
For the statistically averaged amplitud&'), we obtain ~ mulas calculated for a Gd surface with varying degrees of
structural and magnetic roughness. We have considered only
(K&(—K{,j|ASM K, wm)) the case where the magnetization vector is aligned along the
sample surface in the scattering plane in order to enhance the
€. A58 s magnetic effect.
T Figure 3 shows the x-ray resonant magnetic reflectivities
RS calculated at the Gdl; edge (7243 eV} from Gd surfaces
x[<efiq3z(j’)5zc,m(x,y)>_ 1], (5.14) with different interfacial widths for structurab(.) and mag-
netic (o, interfaces. In Figs. @)—3(c), the interfacial
and width of the structural interface is larger than that of the
magnetic interface, that isr.=8 A and o,=3 A. On the
Aa(j")=—ke,—kL(j"). (5.15 other hand, in Figs. @)—3(f), the interfacial widths are re-
versed, that isg.=3 A and o,=8 A. In the kinematical
From Egs.(5.12—(5.14, we see that we can write the a@pproximation(BA) o— o scattering(solid lines in the top

scattering matrix element in the DWBA, as shown in Eq_panels of Fig. B corresponds to pure charge scattering, and
(4.14), as o— 1 scattering(dashed lines in the top panels of Fig.t8

pure magnetic scattering, and the differences between the
reflected intensities for right-1(.) and left- () circularly
TjM=TJ(2)+ E Vj'j ,TJ(?L, (5.1 polarized incident beamgircles in Fig. 3 correspond to the
i'=1.2 interferences between charge and magnetic scattering.
Kinematically, the reflected intensities from each scatter-
ing channel are proportional to a simple Gaussian form,
exp(—ozqﬁ), whereo is the interfacial width of correspond-
ing scattering channel, i.es; for I ,_, ., o, for l,_, ., and
\/(0'02+0'm2)/2 for (I.—1_). The middle panel of Fig. 3
shows natural logarithms of the reflectivities from rough in-
x> et e, [e7(1/2)qu(j’)rr§_1] terfaces normalized to those from ideal systems without
. e roughness as a function of the square of the wave vecquor,
whose slopes are then equal to the squares of the interfacial
. (5.17)  Widths for their corresponding scattering channels. In Fig.
3(b), the slopes obtained from our dynamical calculation for
the case ofe,.=8 A and o,=3 A show good agreement
In the same way as we did for the reflection coefficient,with the kinematical results mentioned above. On the other
using the rough-interface transmission coefficidnf, in-  hand, in Fig. 8e), the slopes of , . and (,—1_) for the
stead of the smooth interfaéﬁf) in the right-hand side of opposite casey,=3 A ando,,=8 A, are not equal to the

=AY TO(-kn > TJ‘?,)L(ki)Eﬁ
M i’ a

where

TO(—ks) K3
ro_ V) 0
Vii=2

v Aki(i) asdi”)

[(Xl_)(o)

+3 et x ey ple” (V27— 1]
B
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10°

0%

w0t o+

FIG. 3. Calculated x-ray reso-
nant magnetic reflectivities at the
Gd L edge (7243 eVj from Gd
surfaces with different interfacial
widths for structural ¢;) and
magnetic ¢, interfaces.(a)—(c)
0.=8 A, o,=3A; (d)-(f) o
=3 A, 0,=8 A; (g)—(i) same as
(d)—(f), but with a 20 A magneti-
cally dead layer. Top panel: re-
flected intensities of theoc—o
(solid lines and o— m (dashed
lines channels, and the differ-
ences between the reflected inten-
sities for right- ( ) and left- ( _)
circularly  polarized incident
beams (circles. Middle panel:
natural logarithms of the reflec-
tivities with interface roughnesses
normalized to those from ideal
systems without roughness as a
function of the square of the
wave-vector  transfer. Solid,
dashed, and dot-dashed lines rep-
resento—o and o— 7 scatter-
ing, and the differences between
I, and|_, respectively. Bottom
panel: normalized scattering den-
sity profiles for charge (solid
lines) and magneti¢dashed lines
scattering.
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squares of their corresponding interfacial widths but followmagnetic interfacial width is larger than the structural one at
the slope ofl ,_,, at highqg,'s. the same interface, as shown in Fidf)3Instead, such a
This indicates that the kinematical argument mentionedougher magnetic interface can occur in a magnetic system,
above, i.e., one-to-one correspondence suchr-ast chan-  where a magnetically “dead” layer exists near the top sur-
nel to pure magnetic scattering, is no longer valid for such dace and so the average position of the magnetic interface
case of larger magnetic interfacial width, as shown in Fig.may not coincide with that of the structural interface, as
3(e). In other words, both contributions from charge andshown in Fig. 8i). In Fig. 3g) (1. —1_) (circles shows an
magnetic scattering should be taken into account for evergscillation due to a magnetically dead layer with a thickness
scattering channel, which is naturally included in the dy-of 20 A. In this case, the slopes in Figh3 follow again the
namical theory(such as our self-consistent methoth the  kinematical result mentioned above because the magnetic in-
case shown in Fig.(8), since the charge-scattering channelterface and the structural one are separated spatially.
is much stronger than the magnetic-scattering channel and As a further check on our calculations, we have calculated
also drops off much more slowly with, due to decreased the reflectivity by dividing the error-function profile, as
roughness, there is conversioneof 7 polarization at larger shown in the bottom panel of Fig. 3, into many very thin
g, even when the “pure” magnetic scattering has becomeslices and using the>22 recursive matrix formulas without
negligible in the kinematical limit, because of magnetic scat-any roughness assumptiotfaie found that the results using
tering out of the still strong charge channel. Thus the this slice method are exactly the same as those from our
— and (. —1_) reflections will asymptotically decay at a self-consistent method assuming Gaussian height distribu-
rate governed by the decay of the charge channel, which isons in Fig. 3. Thus our self-consistent method based on the
determined by alone. DWBA produces very accurate results for the x-ray resonant
However, it is not easy to find a physical system where anagnetic reflectivity and is much faster computationally.
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VII. MULTIPLE MAGNETIC INTERFACES proximation analogous to those used previously in several
publications on charge-only roughnés$/=2° Basically, it
corresponds to averaging the reflection coefficiéat the
scattering matrixof each interface over the interface rough-
ness. The comparison with the results of rigorous “slicing
method” made in Ref. 29 has proven that such an approxi-

h if ) f h florti ation works very well. A possible reason for the excellent
use the self-consistent DWBA to define the reflection and igity of this approximation is that the roughness effect is
transmission coefficients, in the same way as in Sec. V,

_ _ mainly displayed at greater incidence angles, where the re-
which are given by flection is small and the multiple scattering can be neglected
(the total reflection amplitude is a linear sum of contributions
from individual interfaces Note that, since we are consid-
3 y 17 (0)_ Rt ering the coherent scattering which involves only the statis-

To=(1=V'h) "Ty’'=My, (7)) tical average of the scattering amplitude in E4.13, there
whereR,, T, are the reflection and transmission coefficients!S N0 contribution from any cross-interface correlations of
for the nth rough interface, an®?, T() are those for the roughness. This will not be the case with diffuseff-
corresponding smooth interface. The explicit expressions foPPeCUaY scattering’

RO TO "u,, V,, andV', matrices in Eq(7.1) are given

in Appendix C, depending on whether the upper and lower
layers on thenth interface are nonmagnetic or magnetic lay-
ers, respectively.

By analogy with the recursion relation for the coupled We present here numerical examples for x-ray resonant
waves derived for the smooth interfaces in Appendix Emagnetic reflectivity from a Gd/Fe multilayer using the
(originally developed by Stepanov and Sithaintroducing  above formulas. Since Gd/Fe multilayéMLs) have vastly
WPY matrices for the rough interfaces, we may derive thedifferent Curie temperatures and strong interfacial coupling

For a multilayer with multiple interfaces, each layer can
be characterized by its dielectric susceptibility tenggg ,
for the nth layer, which can bey,s .= xnd.s for nonmag-
netic (isotropio layers andy .z n= Xndups+ X730 for mag-
netic (anisotropi¢ layers. For each rough interface, we can

Ry=(1-Vy) YRP+Uy =M,

VIIl. NUMERICAL EXAMPLES FOR MULTIPLE
INTERFACES

recursion relation analogous to HE5), obtaining of Gd and Fe, these systems give rise to complex magnetic
structures depending on the layer thickness, temperature, and
W, =AW, applied magnetic field® Due to the advantage of Gdedge
resonances available in the hard x-ray regime, several
Wi =MbY AWM experimental studies for these Gd/Fe ML's have been
performed using x-ray resonant magnetic reflectivity
Wit =Wt B W measuremenl%l.’13'14Ag§in, we have considered only the
case where the magnetization vechdlx.
A= Vil We have used the experimentally determined values for
n+1 Bn n+1 (7-2) . . .
charge and magnetic resonant scattering amplitutlgs,
whereﬁn andEn are defined by =f.ntift,, at the resonant energy. The energy depen-
L o dences of the absorption coefficient for opposite helicites,
A=ME (1-WITMT )L wr(E), were measured from 4Gd(51 A)/Fe(34 A);s
multilayer, which will be discussed below as an experimental
B,=WI(1-M", WiH)~2, (7.3  example. The edge-step normaliz&d, were obtained from

) o . . the charge and magnetic absorption coefficieptsy, [ .
Finally, the specular reflectivity of a magnetic multilayer =(u"+u)2, um=p"—u"], through the optical theo-
with rough interfaces can be obtained by rem, f? e . Their absolute values were determined us-
_ iyt ing the tabulated bare-atom scattering amplitudes away from
Ro=WnTo. (7.4 resonance. Real parts were obtained from differential

To calculate the sum and difference in the reflectivities forKramers-Kronig transforms of imaginary parts. Figuréa) 4
(+) and (=) circularly polarized incident x rays, substitut- @nd 4b) show the charge and magnetic scattering amplitudes
ing To=1/\2(1,%i) in a similar way to Eqs(5.8) and (5.9) around the Gd_, edge obtained in such absorption measure-

yields ments. These values are in good agreement with the calcu-
lated ones from the listed values &fand B in Eq. (3.3
L= | (W) o 2 LR ol 2 [ () 2 [ (WD) 2, obtained from Ref. 8. For consistency of the definitions, it
’ O+ (WA 227 [ (W 2™+ [ (W) 2 should be mentioned that th¢ , used here correspond to
.- =2 |m[(\7VF\1t)11(\7Vﬁ)’£z+(Wﬁ)zﬂwﬁ)’z‘z] Im[A,B] in Eq. (3.3, whereas thef_ ., correspond to

(7.5 —Rdg A,B], respectively.
5 _ Figure 5 shows the calculated x-ray resonant magnetic
where Q/v[j)i,- is theij element of the X 2 matrix Wy . reflectivities from af Gd(51 A)/Fe(34 A),s multilayer for
The above suggested approach to calculating the effectdifferent incident x-ray energies indicated in Fig.(dr 7926
of roughness in multilayers on specular reflectivity is an ap-V, (b) 7929 eV,(c) 7931 eV, andd) 7935 eV. The lines and
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FIG. 6. Calculations with different magnetic interface rough-

indicate the photon energies, where the x-ray resonant magnetitesses(a) and(c) o,=2.1 A, and(b) and(d) o,=6.2 A. All other

reflectivities in Fig. 5 were calculated.

parameters and symbols are the same as those in Fig. 5.

symbols represent the sum and difference in the reflecteip puffer (100 A) and cap30 A) layers, the Kiessig fringes

intensities for (-) and (—) circularly polarized incident x
rays, respectively, calculated using E(.5. Since the

between the multilayer peaks i (+1_) intensities result
from the interference of the scattering of Nb layers and thus

Gd/Fe multilayer was assumed to be sandwiched betwee%ow little energy dependence around the Gd absorption

10t

(a) 7926 eV
ol | —) (b) 7929 eV
——(1,-1)>0 |

) =
_-5 10 31 +(1+—I_)<0 1
=]
2 s
= 10

1077 f

10t

107
2 107
w0
o |
ot g
= 1070}

1077

107°

0 01 02 03 04 050 01 02 03 04 05
q, [A™] q, [A™]

FIG. 5. Calculated x-ray resonant magnetic reflectivities from
[Gd(51 A)/Fe(34 A),s multilayer for different incident photon en-
ergies indicated in Fig. 4(@) 7926 eV, (b) 7929 eV,(c) 7931 eV,
and (d) 7935 eV. Both structuralcharge and magnetic interfacer-
oughnesses are, ,=4.7 A and 3.6 A for Fe/Gd and Gd/Fe inter-
faces, respectively. The solid lines represent1_) intensities
and open(filled) circles represent the positiYeegative values of
(I +—1_) intensities.

a

edge. On the other handl (—1_) intensities around the
multilayer peaks show a clear energy dependence in signs
and magnitudes relative td (+1_) intensities. In Figs. &)
and Hd) at which energied;, becomes much smaller than
f.,, the signs and relative magnitudes bf (-1 _) intensities
follow simply the energy dependence ff in Fig. 4b), as
expected in the kinematical approximatiorAt the energies
close to the absorption edge whefg cannot be neglected,
however, one can hardly expect the signs and magnitudes of
(I —1_) intensities to be obtained directly from the values
of f;, andf,, in Fig. 4b). Therefore, quantitative analysis on
X-ray resonant magnetic reflectivity data at the resonant en-
ergy requires accurate calculation taking into account refrac-
tion and multiple scattering effects using dynamical theory,
such as our self-consistent method presented above. In par-
ticular, this indicates the necessity of going beyond the
simple Born approximation and to treat resonant magnetic
scattering in the soft x-ray regime, where in fact the impor-
tantL edges of most magnetic transition metals lie.

In order to study the effect of the magnetic roughness
amplitude, (, —1_) intensities for two casesr,,<o. and
o> 0, have been calculated, as shown in Fig. 6. The cal-
culations foro,=o. have been shown in Fig. 5. For all
cases, the charge roughness amplitudes were assumed to be
Tcreici=4.7 A ando gqre=3.6 A. At the energy of 7935
eV, the intensities ofI(, —1_) around the multilayer peaks
are proportional to a simple Gaussian form, expfqg), as
shown in Figs. &), 6(a), and &b). This is consistent with
the kinematical calculatiorf$, and o for (1, —1_) corre-
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FIG. 7. Models of magnetic structures in Gd layers. Uniform
magnetizationa), ferromagnetic moments only near the Gd/Fe in-
terfaces(b), and ferromagnetic moments near the centers of Gd
layers between magnetically dead lay&s While interfaces with 1o
‘o, oy represent both structurally and magnetically mixed inter-
faces, interfaces with &.” (or “op,") represent purely structural 10718
(or magneti¢ interfaces.

107°

Intensity

10—15

sponds to\(o2+02)/2 as given by the kinematical argu- - L ot AN
ment. On the other hand, at the energy of 7929 eV wiire O T 0l 02 03 o4 050 o1 oz o3 o4 05
cannot be neglected, such a kinematical argument is nc q [A q [A

longer valid. Comparing Figs.(b), 6(c), and &d), we can ‘ ‘

see that the magnitudes df.(—1_) peak intensities do not FIG. 8. Calculatedl(, —1_) intensities for different magnetiza-
follow a Gaussian form, exp{ crzqg), but their signs change tion depth profiles in Gd layers. Ife)—(c) ferromagnetic layers
from negative(filled circles to positive (open circleg val- ~ exist only near the Gd/Fe interfacgBig. 7(b)], and their layer
ues. This indicates that (—I_), which is known to be the thicknesses are 4.6 £a), 8.4 A (b), and 12.8 A(c). In (d)—(f)
charge-magnetic interference scattering in the kinematicdprromagnetic layers exist in the middle of Gd layers and are sand-
theory/ is sensitive even to the interference between charg®iched between magnetically dead laygFeg. 7(c)], and the layer
and magnetic roughness amplitudes. However, it should blicknesses of the dead layers are 4.6df 8.4 A(e), and 12.8 A
mentioned again that this result cannot be reproduced by tH&): All magnetic roughness amplitudes asg,=4.2 A, which is
kinematical calculation but only by the dynamical one pre-e'ﬂec“ver same ag;, and the photon energy 5= 7929 .eV' Al
sented above. other parameters and symbols are same as those in Fig. 5.

Let us now consider the case where the magnetic structure ) ) ]
in the resonant layers may not coincide with the chemicall NiS may be ascribed to a spatial separation between the
structure. For example, the ferromagnetic moments in G@harge and magnetic interfaces in mode and (c), as
layers near Gd/Fe interfaces can be induced by the adjaceffown in Fig. 7. _ _ _
ferromagnetic Fe layers above the Curie temperature of Gd N addition, the signs and relative magnitudes of (
atoms'!* or a magnetically “dead layer” may exist at an —1.) intensities at the multllayer peaks change rema_rkabl_y
interface between a ferromagnetic layer and an antiferromagﬁs the thicknesses of magnetized layers change. This point
netic layer. Here we assume simply three different magnetit@s been already noticed by authors of Refs. 15 and 17. In
zation depth profiles in the Gd layers of a Gd/Fe multilayergeneral, the peak intensities of the{ n)th order ML peak
as shown in Fig. 7: uniform magnetizatioa, ferromagnetic and its multiple orders are weak compared to other peak
moments only near the Gd/Fe interfad®, ferromagnetic intensities when the thickness ratio between two constituent

moments near the centers of Gd layers between magneticallgyers isn/m. For example, in our G81 A)/Fe(34 A)
dead layergc). multilayer, the fifth peak corresponds to such a suppressed

Figure 8 shows the results of calculations of x-ray resoP€ak. Therefore, different thicknesses of magnetic layers
nant magnetic reflectivities froniGd(51 A)/Fe(34 A),;  readily change the order of the suppressed peaklin (
ML's with the different magnetic structures of Fig. 7. We —!-) intensities, as shown in Fig. 8. On the other hand, the
assumed all magnetic roughness amplitudesrgi=4.2 A signs of (. —1_) intensities for model¢b) [Figs. §a)-8(c)]
(effectively same ass.) and the photon energy oE anq (c) [Fig. S(d)—S(f)] are opposite to each other, because
=7929 eV. In Figs. 8)-8(c), Gd layers were assumed to their magnetic structures are exactly reversed.
be magnetized only near the Gd/Fe interfape®del (b)],
and the thickness of each magnetized layer was assumed to IX. EXPERIMENTS
be 4.6 A(a), 8.4 A (b), and 12.8 A(c). On the other hand, in
Figs. 8d)-8(f), Gd layers were assumed to be magnetized in X-ray resonant magnetic reflectivities were measured
the middle of each Gd layer and sandwiched between madgrom an Fe(34 A)JGd(51 A)/Fe(34 A),s multilayer. The
netically dead layersmodel (c)], and the thickness of each multilayer was sputtered onto a Si substrate using Nb buffer
dead layer was assumed to be 4.6d% 8.4 A (e), and 12.8 (100 A) and cap(30 A) layers. superconducting quantum
A ). interference device magnetometry and XMCD measurements

Unlike the case of uniform magnetizatimodel (a) in ~ show that the multilayers couple antiferromagnetically at the
Fig. 7] shown in Fig. %b), (I , —1_) intensities in Fig. 8 for Gd/Fe interfaces and have coercive fietdS0 Oe at 300 K.
models(b) and (c) show no suppression in peak intensities X-ray measurements were performed at sector 4 of the Ad-
due to the charge-magnetic interference, as discussed abow@nced Photon Source at Argonne National Laboratory. Un-
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FIG. 9. (Colon (1. +1_) (a) and (, —1_) (b) intensities measure@ymbolg from a Fe(34 A)Gd(51 A)/Fe(34 A),s multilayer near
the GdL, edge(7929 eV\}. The lines represent the best theoretical fits with the mgagleh Fig. 7. Note that the colors of symbols and lines
in (1, —1_) intensities are different for opposite signs of the intensities.

dulator radiation was monochromatized with doubl€&L 1) strong antiferromagnetic exchange interaction with the mag-
crystals and its polarization converted from linear to circulametically ordered Fe layerS.From the best fit, the thickness
with a diamond(111) quarter-wave plate operated in Bragg of the ferromagnetic Gd layer was estimated to be 4.5
transmission geometry. The sample was placed in B +0.3 A, which is consistent with our previous wakMag-
=2.1 kG field parallel to its surface and in the scatteringnetic roughness amplitudes for Gd/FEe/Gd and Gd-
plane. Specular magnetic reflectivity was measured at roorferromagnetic/Gd-paramagnetic interfaces were estimated to
temperature with a photon energy near thelGdesonance be 4.2-0.1 A and 4.6-0.1 A, respectively.
(7929 eV} across multilayer Bragg peaks by switching the
helicity of the incident radiation at each scattering vector
= (4w/\)sin 6, with 6 being the grazing incidence angle.
Figure 9 shows specular reflectivity curves obtained by The formulas for x-ray resonant magnetic specular reflec-
adding[(a), (I;++1-)] and subtractind(b), (1.—1_)] re- tivity have been derived for both single and multiple inter-
flected intensities for opposite helicites of the incoming xfaces using the self-consistent method in the framework of
rays. Symbols represent measurements and solid lines repréte DWBA. For this purpose, we have defined a structural
sent the fits calculated using E(..5). From the fit for (. and a magnetic interface to represent the actual interfaces.
+1_) intensities, we obtained the layer thicknesskg; The well-known Nevot-Croce expression for the x-ray
=50.74+0.09 A andde.=33.98-0.09 A, and the rough- specular reflectivity from a rough surface has been general-
ness amplitudes of charge interfaces rec=4.7+0.1 A ized and examined for the case of a magnetically rough sur-
and o gyre3.6+0.1 A. From the fit for (, —1_) intensi-  face. The formalism has been generalized to the case of mul-
ties, we found that the Gd layers were fully magnetized onlytiple interfaces, as in the case of thin films or multilayers.
near the Gd/Fe interfaces at room temperature, which ilumerical illustrations have been given for typical examples
above the bulkT, of Gd. This magnetization is induced by a of each of these systems and compared with the experimental

X. CONCLUSIONS
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data from a Gd/Fe multilayer. We have also presented the 1 0 —u

explicit expressions in the small-angle approximation, which 5 2 L

are readily applicable to transition-metal and rare-edrth 0 f+xi—u —I1B" |l =0, (A5)

edge resonant magnetic reflectivities. The code for the calcu- -u iB’ 02+ x1

lations in this paper is also available in C language from one

of the authorgD.R.L.). and the respective roots ané"234=+ \/¢Z+ y,; +B’. Two

roots of theseu("’'s with Im[u*?]>0 and the other two
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APPENDIX A:  EXPLICIT EXPRESSIONS FOR R{), T(? !
USING 2X2 MATRIX FORMULAS ‘
. . 6|2+X1_ u(])2 . . .
To calculate the explicit expressions f&f°) and T{% in EQ=u) —————gD, EP=ED. (A6)

Eq. (4.4), we follow Stepanov and Sinha’s approdttevel- iB’
oped for magnetic resonant reflections from ideally smoottpng if we denote
interfaces. The electric field,_o(r) inside the magnetic me-

dium with a dielectric susceptibility tensor given by E4.2) U= 67+, +B'=u,, u®=¢?+y,-B'=u_,
can be represented as

E,-o(r)= Ee—ikouz+ik0c050ix’ (A1) u®=— u,, u®=—u_ , (AT)
where 6¢; is the incidence angle, as shown in Fig. 1. The
parameteru can be a complex number due to absorption or
total reflection. Substituting this in the wave equation Eq.

(4.1, we obtain

we may then write
EMN=ie®, EP=-ig?®, EP=ie®,
EW=—ig®, EP=uOED (j=1,...,4. (A8

> [(SIFP6—U?) S+ NuNg+ xaplEg=0, (A2)  Sincelu®|<1, EY) can be neglected, then the polarizations
A of the wavesel!) in the magnetic resonant medium can be

wheren, =k, /Ky, i.e.,ny=cosé, n,=0, andn,=—u. reduced to the circular polarizations
If we consider the case where the magnetization vector is . , ,
aligned along the sample surface in the scattering plane, i.e., é(”NEg,J)ég‘l' E?’éw ()72 éo” z~ éﬂ),
MH)? in Fig. 1, the tenso,; of a resonant magnetic medium ) ) o ) L
can be written from Eq(3.5) as V=g +ie =e® =g —ie =, (A9)
If the wave fieldE,-(r) with the incident and specularly
(Xap)M|x= X15a5—i5'zy €4pyM,+C'M My reflected waves inside the nonmagnét&ntropig medium

Ml can be represented as

x1+C’ 0 0 E,—o(r)= (Eoe—ikouoz+ EReiKOUOZ) eikocosbix

= 0 x1 —iB"], (A3) ———
0 IB/ X1 (UOZ Hi +X0)1 (Alo)
where the boundary conditions for the wavés,. o(r) andE,_o(r)
in Egs.(Al) and(A10) must be satisfied for the lateral com-
. . ponentsE| andH of electric fields and magnetic fields, re-
X1=— Fpo(l’)ro'f' ?Anm(r), spectively. SincéHx[kx E], this gives
0 0
A R A R UoEor— UoEr.= 2 EY, (A11)
B'=—Bny(rMy, C'=-—Cnyp(nM;. (Ad) J
kO kO
Assuming that the incidence angle is small (sing~6<1 Eoo+Ere=2 EV,

and n,=cos#~1) and even at the resonangg; remain I

small (x5 <1), and inserting Eq(A3) into Eq. (A2), the

dispersion equa_ltlon for a nontrivial solution of E&2) can uOEOIr_UOER(r:u(j)Z E§,”,
be then approximated by ]
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o . . Incident
Eo,+ ERW=E (U(J)EQ)-G-I‘IXEQ))%E Eg) , reflected o (1) T Q)
J (transmitted)
L . . 1 Myl MY
where the approximation in the last equation was obtained by o (
|u¥|<1 andn,~1. Using Eqs(A6)—(A8), the above equa- n Q) M5 M5

tions can be expressed in thex4 matrix form
FIG. 10. The representation chosen for the elementiBf

1 0 1 0 Eos matrices with the polarization bases of the incident and reflected
0 1 0 1 Eon transmitted waves. The polarization basis is given b, ( €,), as
u 0 —u 0 E shown in Fig. 1, for the waves in the nonmagnetic medium and
0 0 Ro (eD), &2)y, as defined in Appendix A, for those in the resonant
0 u O —ug/ \Egrs magnetic medium, respectively.
11 1 1 (ED
_ _ _ _ 0 uz—u,u_ | Uo(Ui—u_)
]! -l ! -l Es (Up+uy)(Uug+u_) (Up+uy)(Uug+u_)
U, u_ —u, —u_ E. n—r—_ Uo(Us —U_) U2— U, u
o\Y+ - 0 +4-
. _ . _ . . — I
iy —iuo vy iu [ ECY (Up+U)(Up+U")  {Ug+U,)(Ug+uo)
Representing the waves as the vect®ss=(Eo,,Eo,), Ro =RO(ky),
:(ERoiERﬂrr)i Tl:(EEfl)’EETZ))' and Rl:(EETs) vEE;l))a the
4Xx 4 matrices in Eq(A12) can be reduced into four>22 2u, 2u_
blocks Up+u Uptu
0 o U-
M = ’ . (A18)
TO Xt'[ Xtr Tl | 2U+ i 2u_
(Ro) :(X” X”) Rl), (A13) Ug+uy Ug+u_

Houtr urt wrr ) o where theij elements ofMP% matrices are defined by Fig.
whereX®, X, X, X' can be obtained by multiplying the 10, and the subscript—r represents the incidence from a
inverse of the &4 matrix at the left side of EqA12) onto  nonmagnetic medium into a resonant magnetic one. From the
both sides. Since the reflected waves inside the medium vagiefinition of MPY matrices in Eq.(A14), RO(k,) and
i i B =@ =0 i = ' NG
E‘Sh for a s”lngle surfaces __E =0 [i.e,, R,=(0,0)], the T}?}(ki) correspond tav [Lr and M;L,, respectively. For

unknown” waves Ry and T, in Eq. (A13) can be expressed

X p ” the time-reversed waves incident with vecterk;), scatter-
via the “known” wavesT, andR, as ing angled;, and polarizatiorv, MP9 (—k;) matrices are
same as the case ok;(u), but replacing by (—i) in Eq.
(A16), i.e.,

T\ (MY MY\ (T,
RO = Mrt Mrr Rl ' (A14)
where
Mtt:(xtt)fl Mtr:_(xtt)flxtr
Mrt:Xrt(Xtt)—l MrrZX”—Xrt(Xtt)_lX“.
(A15)

From Egs.(A12)—(A15), the explicit expressions fdviP9
matrices are given by

Uo Yo
Up+u Uptu
Mtt — 0 + 0 + :T(O)(k)
n—r uo uo Jm 1/
[
Up+u_ Up+u_
Uy —Ug 0
. Up+ U,
Mng}r: _ )
u_—ug
Up+u_

Mgir(_kf):Mﬁir(ki ;i‘_’_i)

(pg=tt,tr,rt,rr),
TO(—k)=TO(k; ;i —1),

RN —ke)=RO) (ki sio—1). (A17)

For completeness, let us now consider the reverse case
where a wave is incident “from” a magneti@nisotropig
medium with x 5= 184+ X7 “into” a nonmagnetic one
With x ,5= X060, - The explicit forms o9 = matrices can
be evaluated by starting with reversing both sides in Eg.
(A12) and representing the waves @ig=(E\" ,E?), R,
:(E(3) Esr4))1 Tl:(EO(r!EOﬂ')r ande:(ERrr!ERw) in Eq

(A13). Then, MP9  matrices can be obtained straightfor-

r—n

wardly by
M =TQk) =M, M =M,
M =ROK) =M, MIT =MY ., (AL8)

where the subscrigt—n denotes the incidence from a reso-
nant magnetic medium into a nonmagnetic one. In the same
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way as in Eq(A17), theMP9 (—k;) matrices for the time-

—

reversed waves can be also obtained by replaginoy
(=i) in Eq. (A18).

PHYSICAL REVIEW B 68, 224409 (2003

In order to evaluate the explicit expression for the above
equation, let us now consider the case where the incidence

angle ¢, is small andM|x, as discussed in Appendix A. In

Finally, let us also consider the magnetic-magneticthis case,éj=égiiéw and k!,(j)=kou. , where the upper

(resonant-resonant interface  between  upper x(gs up

2
:Xupb‘aﬁ—i_x(a,g,up) and lower Q(aﬂ,dwz de5a3+Xa,8,dw)
resonant magnetic layers. By employing th& 4 matrices

and lower signs correspond j{e=1 and 2, respectively, and

involving resonant magnetic medium to both sides of Eq.

(A12), the explicit expressions dfl P

r—r

can be given by

u
2utP 0
dw u
" ut+u'P
r—»r:
0 2u“P
udW4 yup
dw u
u'—u'P 0
t uiw—l- ui® t t
Ivlrr r= ) M :_Mrr r
— udW— uup r—r —
0 _ _
udW4 yup
dw
2uy 0
dw u
i ut+u'P
Mrﬂr_ 2 dw ’ (Alg)
u-
0 R
udW4 yup
up, dw__

where ™ M= /07 + xyp, aw Blp.aw aNd B, 4 Was defined
in Eq. (A4). Note that thes#1 P9 = matrices for the magnetic-

r—r

magnetic interfaces are applicable to the nonmagnetic-

nonmagneti¢nonresonant-nonresonamiterfaces simply by
settingB/, 4, to be zero.

APPENDIX B: EVALUATION OF THE MATRIX
ELEMENTS INVOLVING x©

To evaluate the matrix element in Eq4.15 and(5.12),
we assume thaty=0 in Eq.(4.7), i.e., the first nonmagnetic
medium is vacuum. Then the matrix element in E415
can be evaluated from Eggt.3) and(4.10 as

k(= ki, v} OIE,(r))

= Ak% 5kixkfx 5k_

|ykfy

2 T(O(— k)

0 ot
xEﬁ ej‘a(XléaBnLXEfg)eﬂﬂf dze ikl —kidlz,
@ —0

. TO(—ky)
= Akgékixkfx5k tJ—
kfz(] ) - kiz

iykfy

X2

X Zﬁ eh(X1025F XD €us- (B1)

ki,= —koug. From Egs. (4.2, (A4), and (A7), the
polarization-dependent terms are evaluated by
azﬁ el (X10apT X s
e ICRARICRTAR Y
xit+ix®@=u?-u? forj=lu=0
Xl—i)((z):Uz_—u(z) for j=2,u=oc
T i x@=—i(2-ud) forj=lu=m
ixi+x@=i(u-ud) for j=2,u=,
(B2)

whereug= 6, wheny,=0 in Eq.(A10). The explicit form of
2x2 matrix T{)(—ky) can be obtained fronM},_, in Eq.
(A16) by replacingi by (—i). Then, the matrix element in
Eq. (4.15 can be expressed by a2 matrix in terms of the
polarizations of incident and outgoing beams,and v, as

follows:
k&(— ki, v[XV[E, (1))

2Uq
ivKty Ko(U +Ug) (U_ + Ug)

= | Akg 5kixkfx5k

u,u_—uj
iug(uy—u_)

= 2i Aki,RO) (ki) 8k, 5

—iug(uy—u.)
usu_—uj

" iykfy' (BS)

whereR{))(k;) corresponds td/]'_ in Eq. (A16). Without
loss of generality, the final result in E@3) is applicable for
the case withyy#0, although the calculation foe>0
should be included in Eq$B1)—(B3).

For the transmission coefficient, the matrix element in Eq.
(5.12 for xo=0 can be also evaluated from E¢5.10 and

(5.11 as
k(%(_kayj|X(o)|ki )

= AKGSic ke, B by 2 T (k) 2 T (ki)
14 J"

0 : to
X3 el aadutxGieys | dzel k0
1e% — 00

TO(—k0)T] (k)
z V) 2

=i AK§S¢ k. O k -
ix"fx  Niytfy V,j/ _kfz_ k}z(] r)

X EB € (X18upt X D€ 14, (B4)
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where the vector fieldE(k;,«) in Eq. (5.10 has been used
for the statelk;,u) instead of the “pure” incoming wave
E'M(r) in Eq. (4.3). Similarly to the reflection coefficient in
Egs. (B1)—(B3), the matrix element in Eq(.12) can be
expressed by a’22 matrix in terms of the polarizations of
incident and transmitted beams,andj, as follows:

ka(—Ki Xk )

PHYSICAL REVIEW B 68, 224409 (2003

:4|¢4k}z(] )T(O)(k )5k|xkfx kfy’ (BS)

WhereT(o)(k) corresponds tMY . in Eq. (A16). Again,
the flnal result in Eq(B5) is applicable for the case with
xo# 0 without loss of generality.

Iy

APPENDIX C: EXPLICIT EXPRESSIONS FOR ROUGH-
INTERFACE MPY MATRICES

Yo, Mo For the interface between upper nonmagnetyg,
2 4 Tuptug U tug Xo5aﬁ) and lower resonant magneticy {s=x16as
=1AKy ik, Kiykiy ko Uo iug ) layers, the explicit expressions of the rough-interface
U +up TUu_+ug Mﬁlr matrices can be given by
U —iuo ME =R == Vo) MR, + U,
Up+Ug U,+Ug
—4|Ak|z( )5k|xkfx klykfy Uo iUO M:']tﬂr n—r (I nﬂr) 1T$1()lrv (Cl)
U-+Ug U_+Ug where, from Eqs(5.6) and(5.19),
|
D{”+D4"” pi’-bf”  (Di”+D{” DYY-DEY
RO by oY WaFu® o (uotug)® (UsFug)?  (U_+ug)?
nor R R | D{”+D{” D§V-D§Y D{I+D{ D{I-p{H |’
(Up+Uug)®  (U_+ug)? (U +ug)®  (u_+ug)?
Dg‘>+D(2‘)+Dg‘>—D5;> _(p{’+Dy) D{’-Df”
1 uz—uj uz—uj u?—uj uz—uj
I_V —~r— 5 l
n=ro2 i D(l*)_i_ D(Zi)_ D(3*)_DE;) D)+ D(Z*) D¢ )_Dgf*)
u? —u? u? —u? u? +u? u? —u?
D{+DY) 0 U . U
|\’ ui —Ug T(O) :Mtt _ u; +Up Uy +uUg (CZ)
n—r (,)_ (,) n—r n—r u u '
0 D3 '—Dy, 0 i 0
2_ .2 u_+u u_+u
u? —u? 0 0
|
and For the reversed interface between upper magriet&o-
- 0 +un2? nand and lower nonmagnetic IayerM,_,n matrices can be
D)= (x1— xo)e” 02>t e also given by
D(Zt):Bref(kélz)(uﬁuo)zai
) i ME = Ren=(=Ve_n) R+ Ur),
Dgi):(Xl_Xo)e—(kOIZ)(u,tuo)zrrc,
DE;;):B/e—(k(";/Z)(u,:uo)zzrﬁ1 (C3) M =T, ==V, ) TO (C9

Here, (v1— xo) = (U2 +u?)/2—uZ andB’ = (u2 —u?)/2 can

be used fronmugy= \/0? +xo andu.. = \/0? +x1£B’.

where
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D{7+D§M) 0
RO 4y — (Uy+Ug)?
r—n’ =r—n . D(3+)—DE1+) '
(u_+up)?
=V, n=1=V'hy, =V’ h=1=Vy .y,
2u, 2u_
U,+uUy  U_+u
TO =Mt C5
r—n r—n— ] 2U+ 2U, ( )
Iu++uo Iu_+u0

In the same way as EA18), other MP9 matrices can be
given by

— £t o _ngptt
Mran! I\/lnar Man,

Mtr

n—r

—nptt
Mn—»r

_ rt r
Mn—»r ! Mr—»n

Mtr

r—n

(C6)

Finally, for the magnetic-magneticesonant-resonanin-
terface between upper resonant magnetjﬁﬂ(—x‘{ B
X3 ") and lower resonant magnetlcxi’g X Sup

(2) ™) layers,MP9. | matrices can be also given by

M Vo) YR +U, ),

r—r— r—»r (I r—r
M:t—w_ ==V r—>r) lTEO—)ﬁv (€7
where
DY+ DE
o | W u)?
Rr*}r"'ur*}r ’
D(7+)_Dg+)
(U4 yur)2
D{)+DE)
(U2 (uP)?
-V, = p¢I—pg) | (C8
0 dw up)2
and
DL = (42— yiPe (KR =Dl
up, 2 2
D)= (BY,~ Blpe (G2uIuH%
DY) = (3 yiP)e (g “”—p’z“g,
D)= (BB e~ (GO, (C9

and (—V,_,) corresponds tol(- VHr) when switching
the upper and lower layers, aﬁ'd corresponds tM ',
in Eq. (A19). Here, - le) [(uI™2+ (ui™?]/2

PHYSICAL REVIEW B 68, 224409 (2003

“[uD2+(uH2]/2 and Bg,— Bl =[(uT)*~ (u™)?]/2
—[(u"2—(u"»?]/2 can be used from uYP
=07+ x{P "B, 4 In the same way as EGCE), two
other matricesM!" . and M!" . can be also obtained from

r—r
Mt andM'  in Eq.(C7), respectively, by switching the

upper and lower layers. We should mention again that these

rough-interfaceMP% matrices for the magnetic-magnetic
(resonant-resonaninterfaces can be reduced to the cases for
the nonmagnetic-nonmagnetitonresonant-nonresonairi-
terfaces by settin@,, 4, to be zero.

APPENDIX D: SOLUTIONS OF SELF-CONSISTENT
MATRIX EQUATIONS FOR NONMAGNETIC
INTERFACES

For nonmagnetic interfacefM |=0) ando— o polariza-
tion, simply

=+ x1=1K3 ko

Inserting this in Eq.(A16) modified for (—k;) and using
x1— xo0=(|k}J?—|k,|?)/k3, the self-consistent solution for
the reflection coefficientd; =k and ;= 6;) in Eq.(5.6) can
be reduced to a scalar as

U,=u_ (D1)

R=(1-V) YRO+U), (D2)
where
_ kel = kel |k| e~ (U2) (Kl +Ik)?0g_ 1, (D3)
Ikz|+|k|
Ikz|+|k|

V=1—e (12— [K)%0g

andk},=|kl|, andk;,= =—|k,|. Then, we obtain

kol =kl
i+ 1k

o~ (W2) (kg +1K) 202+ (112) (k- K)o

= R(O)e*Z\szktzltTg, (D4)

which is consistent with the Nevot-Croce foffh.
Similarly, the self-consistent solution for the transmission

coefficient in Eq.(5.19 can be reduced into a scalar as

T((r(r):,E Tj(r:.E (1_V,)71TJ(?7)1 (DS)
j=12 j=1,2
where
V' =1— e (W2 kI-lk)?ef
k|
TR =T = (D6)
kgl + K]
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Then, (Tn) (W;t wY TO) €3
2l Ro/ \wi w'/\R-n/’

- e(12) (k) — K)o — T(0)g(112) (Kol ~ K)oy
k,|+ K and using the recursion formulas involviMf?, matrices at
z z +1
(D7) the nth interface, i.e.,
which is consistent with the Vidal-Vincent forff. it tr
M n+1 M n+1

rt rr
Mn+l Mn+l

(Tn+l) _ Tn ) (E4)

APPENDIX E: RECURSIVE 2 X2 MATRIX FORMULAS Ry Ros1/)’

FOR MULTIPLE INTERFACES . . . .
yields the following recursion formulas favh9 matrices:

For multiple interfaces, additional phase differences be-

tween different interfaces should be taken into account to WH,  =AWE,
extend the results for a single interface in Appendix A. Fol-
lowing Ref. 18,MF%, matrices for thenth interface between W =MU AWM,
nth and (1+1)th layers can be modified from EGA15) as
ME+1:MttF;1' ME’+1:M”’ Wrnt-%-l:W:‘lt_l_BnM:‘ltﬁ-lWE‘lt’
Mi 1 =Fo "MTF Y ML =F M7, (ED he1=BaMyiy, (E9)

where MPY are the 22 matrices obtained for a single whereA, andB, are defined by
smooth interface in Appendix A, depending on whether the N o
upper and lower layers on theth interface are nonmagnetic An=Mp (I-WiMy ),
or magnetic ones, respectively,

o kot oty 0 Bn=Wq (1-Mp, ;W) (E6)

Fn= ' (E2) Here W} determines the reflectivity of the whole multilayer,

o Ro=Wx T, (Ry=0), from Eq.(EJ).
andu. , andd, represent the refracted angle defined in Eq. Finally, the field amplituded,,, R, inside the layers can
(A7) and the thickness of theth (uppe) layer, respectively. pe optained from EqSE3)—(E6) by
For nonmagnetic layersy.. , reduces tauy, in Eq. (A10).
R, andT, are the vectorsK, ;,R,,) and (T, 1,T,) repre- Ry=(1—MI W) "M, Ry 1+ ML WAT),
senting the two waves reflected and transmitted, respectively,
at the top of thenth layer.(In Ref. 18, they are defined at the
bottom of thenth layer)

Introducing WRY matrices following Ref. 18, which are which must be progressively applied to all the layers starting

0 e ikou_ ndn

To=WITo+WIR,, (E7)

defined by at themultilayer substrate wheRy,=0.
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