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The effect of hydrostatic pressure on the ferromagnetic ordering transition of the monoclinic
Gd5�Si0.375Ge0.625�4 giant magnetocaloric effect compound was investigated using x-ray magnetic
circular dichroism measurements in a diamond anvil cell. The Curie temperature TC increases
linearly with applied pressure up to �7.2 GPa, at which point a discontinuity in dTC /dP occurs.
This discontinuity, which appears when TC reaches �277 K, is also observed when the unit cell
volume is reduced by Si doping and is associated with the volume-driven monoclinic �M� to
orthorhombic �O�I�� structural transition. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2828514�

I. INTRODUCTION

The Gd5�SixGe1−x�4 family of magnetocaloric materials
has attracted attention due to its potential in environmentally
friendly magnetic refrigeration applications that do not rely
on harmful hydrofluorocarbons found in traditional vapor-
compressed refrigerators.1–3 Unlike the common magnetic
refrigerant materials, which exhibit a simple adiabatic de-
magnetization process, the Gd5�SixGe1−x�4 compounds
absorb/expel heat by harnessing changes in both magnetic
and structural entropies that occur at the first-order magne-
tostructural transition responsible for their giant magnetoca-
loric effect.4,5 This transition is characterized by the
breaking/reforming of Si /Ge covalentlike bonds connecting
Gd-containing slabs with the simultaneous disappearance/
appearance of ferromagnetic ordering. To date, this marten-
siticlike transition has been demonstrated to be handily al-
tered by temperature,1–6 magnetic field,7,8 composition,1–5

and pressure.9–11 Our previous x-ray magnetic circular di-
chroism �XMCD� experiments in a diamond anvil cell pro-
vided strong evidence for a close correspondence between Si
doping and pressure.12 However, due to the limited pressure
range attained in these experiments ��15 GPa�,12 two differ-
ent compounds, namely, Gd5�Si0.125Ge0.875�4 and
Gd5�Si0.5Ge0.5�4, needed to be measured in order to fully ex-
plore the correspondence of pressure and chemical Si doping

over the entire 0�x�1.0 range. In particular, we were not
able to directly demonstrate that the observed discontinuity
in TC�x� at x�0.5 �Ref. 13� is volume driven. In this paper,
we report results on a Gd5�Si0.375Ge0.625�4 sample, whose Si
content is between those of the two previously studied
samples �x=0.125 and x=0.5�. This allowed us to directly
prove that the discontinuity in TC�x� at x�0.5 is volume
driven and also to further establish the correspondence be-
tween Si doping �chemical pressure� and physical pressure in
this class of the giant magnetocaloric effect compounds.

II. EXPERIMENT

Polycrystalline samples of Gd5�Si0.375Ge0.625�4 were pre-
pared as described in Ref. 2. The x-ray measurements were
carried out at beamline 4-ID-D of the Advanced Photon
Source, Argonne National Laboratory. XMCD �Ref. 14�
measurements at the Gd L3 edge �2p3/2→5d transition at
7.243 keV� were performed to probe the magnetic polariza-
tion of Gd 5d states at various applied pressures. X-ray ab-
sorption fine structure measurements15 at the Cu K edge
�8.979 keV� of copper powders loaded with the sample were
used for in situ pressure calibration. Further details on the
high-pressure XMCD setup can be found in Ref. 16. Ambi-
ent pressure measurements were done with the sample out-
side the cell.a�Electronic mail: joseph-tseng@northwestern.edu.
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III. RESULTS AND DISCUSSION

The pressure-dependent measurements were carried out
in the pressure range from ambient up to 18.9 GPa. Figure
1�a� shows the temperature-dependent Gd L3-edge XMCD
data for the Gd5�Si0.375Ge0.625�4 sample under an applied
pressure of 12.4 GPa. The inset shows the full reversal of the
XMCD signal upon reversal of the 0.7 T applied field. Data
at other pressures are of comparable quality.

Figure 1�b� shows the effect of pressure on the magnetic
transition. The TC of Gd5�Si0.375Ge0.625�4 increases with pres-
sure, as was also observed for both Gd5�Si0.125Ge0.875�4 and
Gd5�Si0.5Ge0.5�4 samples12 �TC is determined by the highest
absolute value of the derivative of the fitted lines�. Unlike
Gd5�Si0.125Ge0.875�4, which displays an intermediate ferro-
magnetic �FM�-antiferromagnetic transition before becoming
paramagnetic on warming leading to a nonzero XMCD sig-
nal above TC at low pressures,12 Gd5�Si0.375Ge0.625�4 does not
show any remanent XMCD signal above TC for all pressure
points, indicating a direct FM-paramagnetic transition. In ad-
dition, as shown in Fig. 1�b� the rate of increase in the fer-
romagnetic transition temperature for Gd5�Si0.375Ge0.625�4 is
reduced for pressures beyond 8.1 GPa. A similar result was
shown in Fig. 1 of Ref. 17 for a Gd5�Si0.5Ge0.5�4 sample.

The magnetic transition temperatures as a function of
pressure for x=0.125, x=0.375, and x=0.5 samples are pre-

sented in Fig. 2�a�. The data sets for x=0.125 and x=0.5
samples are taken from Ref. 11. It is easy to see that the
sample with x=0.125 yields a linear dTC /dP up to �15 GPa,
while that with x=0.375 exhibits a discontinuity in dTC /dP
at �7.2 GPa. A similar discontinuity induced by pressure
was also observed for x=0.5.10,12,17 It is known that a �
�M�→� �O�I�� phase transition is responsible for this dis-
continuity in TC for x=0.5 as a result of the different com-
pressibilities of M and O�I� structures.10 Since the disconti-
nuity in dTC /dP occurs at �277 K on both x=0.375 and x
=0.5 samples, it is reasonable to assume that the M→O�I�
structural transition for x=0.375 occurs at �7.2 GPa at TC

�277 K �see the dashed line in Fig. 2�a��. In addition, the
dTC /dP for x=0.375 at pressures below 7.2 GPa in Fig. 2�a�
is 1.5 K kbar−1, which is comparable to 1.2 K kbar−1 ob-
tained in x=0.125. Furthermore, dTC /dP measured at higher
pressures reduces to 0.15 K kbar−1, comparable to
0.2 K kbar−1 obtained for the x=0.5 sample. The good quan-
titative similarities reveal that x=0.375 behaves analogously
to x=0.125 at low pressures and to x=0.5 at high pressures.
This behavior is dictated by the change in compressibility
introduced by the M→O�I� structural transition.

A P-T diagram is plotted in Fig. 2�b� for the x=0.375
sample. The discontinuity in dTC /dP at 277 K is also ob-

FIG. 1. �a�Temperature-dependent Gd L3-edge XMCD signal measured at
P=12.4 GPa. The inset shows the reversal of XMCD upon reversal of ap-
plied magnetic field. �b� Integrated area under XMCD curve as a function of
temperature for selected pressures. The XMCD is normalized to its satura-
tion value at 10 K.

FIG. 2. �a� The transition temperature as a function of pressure of x
=0.125, 0.375, and 0.5 samples, respectively. Open symbols represent the
data measured at ambient conditions. The horizontal dashed line marks
slope discontinuity observed for the x=0.375 sample and also the TC

�277 K� of Gd5�Si0.5Ge0.5�4 under ambient conditions. �b� The pressure-
temperature �P-T� phase diagram of Gd5�Si0.375Ge0.625�4. The data points
indicate the transition temperatures under different pressures. The transition
regime is marked by dashed lines located in between 7.18 and 8.1 GPa.

07B301-2 Tseng et al. J. Appl. Phys. 103, 07B301 �2008�

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



served at this temperature in the x-T phase diagram, where
the M→O�I� structural transition occurs for x�0.5.13

Hence, our results indicate that this transition is volume
driven. When the volume reduction causes TC to reach
277 K, a low-Si/low-pressure phase �monoclinic� will
be converted into a high-Si/high-pressure phase
�orthorhombic�I��.

IV. CONCLUSION

A high-pressure XMCD study on Gd5�Si0.375Ge0.625�4

shows that the monoclinic→orthorhombic�I� structural tran-
sition in this class of materials is volume driven. This tran-
sition can be triggered by Si doping or applied pressure and
occurs when the volume reduction causes TC to reach
�277 K. The results further highlight the correspondence
between Si doping and applied pressure in determining the
magnetic behavior of this important class of materials.
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