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X-ray resonant magnetic scattering from structurally and magnetically rough interfaces
in multilayered systems. I. Specular reflectivity
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The theoretical formulation of x-ray resonant magnetic scattering from rough surfaces and interfaces is given
for specular reflectivity. A general expression is derived for both structurally and magnetically rough interfaces
in the distorted-wave Born approximation as the framework of the theory. For this purpose, we have defined a
‘‘structural’’ and a ‘‘magnetic’’ interface to represent the actual interfaces. A generalization of the well-known
Nevot-Croce formula for specular reflectivity is obtained for the case of a single rough magnetic interface
using the self-consistent method. Finally, the results are generalized to the case of multiple interfaces, as in the
case of thin films or multilayers. Theoretical calculations for each of the cases are illustrated with numerical
examples and compared with experimental results of magnetic reflectivity from a Gd/Fe multilayer.
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I. INTRODUCTION

X-ray reflectivity and offspecular diffuse scattering met
ods have been widely applied over the last decade to c
acterize the morphology of rough surfaces and interfac
particularly with the availability of sources of eve
increasing brilliance for x-ray radiation. Similar techniqu
using neutron beams have also become widespread, pa
larly for the study of magnetic multilayers. In the case o
rays, however, element-specific information regarding
magnetic structure can be readily obtained by tuning the p
ton energy to that of anL edge~in the case of transition o
rare-earth metals!1,2 or of an M edge ~in the case of
actinides!.3,4 The resonant enhancement of the scattering
magnetic atoms at such energies can result in a large en
signal to be comparable to the dominant charge scatter
Resonant x-ray scattering at theK edges of transition metals5

has also been used to obtain information about the magn
structure, although the enhancement is not as large. Reso
magnetic scattering corresponds to the real part of the s
tering amplitude, while the~absorptive! imaginary part gives
rise to x-ray magnetic circular dichroism~XMCD!, which
has been used to obtain the values of spin and orbital
ments in ferromagnetic materials. Detailed descriptions
the formalism for the interaction of x rays with magnetica
polarized atoms have been given in the literature,6–10 from
which a complete description of magneto-optic phenom
in the x-ray region can be obtained and applied.

Several resonant x-ray specular reflectivity experime
have been performed to obtain the magnetization within
layers of magnetic multilayers.2,11–17 The analysis of these
results has generally used recursive matrix techniques de
oped for magneto-optics in the case of resonant x-
reflectivity.18 In general, roughness at the interfaces has b
0163-1829/2003/68~22!/224409~19!/$20.00 68 2244
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ignored or taken into account in anad hocmanner. In prin-
ciple, representing roughness in terms of a graded magn
zation at the interface and using slicing methods could
able one to calculate the effect of magnetic roughness
specular reflectivity at the expense of considerable comp
tional effort. Röhlsberger has developed a matrix formalis
~originally developed for nuclear resonant x-ray reflectivit!
from which specular reflectivity incorporating roughness c
be calculated.19 It was not considered in his paper, howeve
that the magnetic interfaces can have different roughne
from the structural~chemical! ones. In this paper, we defin
separately a structural and a magnetic interface to repre
the actual interfaces and present analytical formulas tak
into account both interface roughnesses, which provide m
faster computational method than the slicing methods
show good agreement with established formulas for chem
interface roughness.

Methods were developed earlier to calculate analytica
the specular component of the charge scattering of x rays
rough surfaces and interfaces using the Born approxima
~BA! and the distorted-wave Born approximatio
~DWBA!.20,21The BA results were extended to magnetic i
terfaces in an earlier publication22 and have already bee
applied to interpreting x-ray resonant magnetic specular
flectivity measurements from magnetic multilayers.14,15,17

However, the BA or the kinematical approximation brea
down in the vicinity of the critical angle and below, since
neglects the x-ray refraction. On the other hand, the DW
takes account of dynamical effects, such as multiple sca
ing and the x-ray refraction, which become significant f
smaller angles close to the critical angle and even for gre
angles at the resonant energies or with soft x rays.
present here the generalization of the DWBA to the case
resonant magnetic x-ray reflectivity from rough magne
©2003 The American Physical Society09-1
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D. R. LEE et al. PHYSICAL REVIEW B 68, 224409 ~2003!
surfaces or interfaces. The principal complication is, ho
ever, that we now have to deal with a tensor~rather than
scalar! scattering length, or equivalently an anisotropic
fractive index for x rays.18 This leads, in general, to two
transmitted and two reflected waves at each interface for
bitrary polarization, which complicates the DWBA forma
ism.

The plan of this paper is as follows. In Sec. II, we discu
a simple conceptual model for a magnetic interface and
relationship to the chemical~i.e., structural! interface and
define the appropriate magnetic roughness parameter
Sec. III, we discuss the~known! scattering amplitudes fo
resonant x-ray scattering and their relationship to the die
tric susceptibility to be used in the DWBA. In Sec. IV, w
present the derivation of the scattering in the DWBA for
single interface with both structural and magnetic roug
nesses. In Secs. V and VI, we derive the formulas for spe
lar reflectivity from a magnetic interface using the se
consistent method in the framework of the DWBA a
discuss numerical results. Finally, in Secs. VII–IX, we d
cuss the extension of the formalism to the case of the sp
lar reflectivity from magnetic multilayers and present so
numerical results with experimental data from a Gd/
multilayer. In the following paper,23 we derive the formulas
for the diffuse~off-specular! scattering from magnetic inter
faces in both the BA and the DWBA.

II. MODEL FOR MAGNETIC INTERFACE

Consider an interface between a ferromagnetic med
and a nonmagnetic medium~which could also be free space!.
Due to the roughness of this interface, the magnetic mom
near the interface will find themselves in anisotropy and
change fields, which fluctuate spatially~see Fig. 1!.

This will produce disorder relative to the preferred ferr
magnetic alignment within the magnetic medium. A simi
situation can arise at an interface between a ferromagn
medium ~FM! and an antiferromagnetic medium~AFM!,
where there is a strong antiferromagnetic coupling betw
spins in the FM and the AFM. Random steps will then p
duce frustration in the vicinity of the interface, resulting

FIG. 1. Schematic representation of scattering geometry
sketch of the chemical~or structural! @zc(x,y)# and magnetic
@zm(x,y)# interfaces, which can be separated from each other b
average amountD. Grazing angles of incidence (u i) and scattering
(u f), the wave vectorsk i andk f , and the photon polarization vec

tors of incidence (êm5s,p) and scattering (ên5s,p) are illustrated.
Small arrows represent the possible orientations of the magn
moments around magnetic interfaces.
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random disordering of the magnetic moments near the in
face. Clearly, in general, correlation will exist between t
height fluctuations of the chemical interface and the fluct
tions of the spins, but a quantitative formalism to account
this in detail has not yet been developed. We make here
simplifying assumption that the ferromagnetic moments n
the interface~or at least their components in the direction
the ferromagnetic moments deep within the FM layer, i
the direction of average magnetizationM̂ ) are cut off at a
mathematical interface, which we call the magnetic interfa
and which may not coincide with the chemical interfac
either in its height fluctuations or over its average positio
e.g., if a magnetic ‘‘dead layer’’ exists between the two i
terfaces~see Fig. 1!. The disorder near the interface is thu
represented by height fluctuations of this magnetic interfa
The basis for this assumption, which is admittedly crude
that the short~i.e., atomic! length-scale fluctuations of th
moments away from the direction of the average magnet
tion give rise to diffuse scattering at fairly large scatteri
wave vectors, whereas we are dealing here with scatterin
a small wave vectorq, which represent the relatively slow
variations of the average magnetization density. The ac
interface can be then considered as really composed of
interfaces, a chemical interface and a magnetic interfa
each with their own average height, roughness, and corr
tion length, and, importantly, in general possessing correla
height fluctuations.

III. RESONANT MAGNETIC X-RAY SCATTERING
AMPLITUDE

The amplitude for resonant magnetic scattering of x ra
has been derived by Hannonet al.,6 and a discussion of the
general formalism may be found in the review by Hill an
McMorrow.9 There are two cases of practical importanc
namely, dipole and quadrupole resonances. We shall res
ourselves here to the most commonly used dipole resona
which is related to theL edges of transition metals and rar
earth atoms. The tensor amplitude for scatteringf ab from a
magnetic atom is given by

(
ab

ef a* f abeib5F f 01
3l

8p
~F111F121!G~ êf* •êi !

2 i
3l

8p
~F112F121!~ êf* 3êi !•M̂

1
3l

8p
~2F102F112F121!~ êf* •M̂ !~ êi•M̂ !,

~3.1!

where êi , êf are, respectively, the unit photon polarizatio
vectors for the incident and scattered waves,M̂ is a unit
vector in the direction of the magnetic moment of the ato
l is the x-ray photon wavelength,f 0 is the usual Thomson
~charge! scattering amplitude @ f 052r 0(Z1 f 82 i f 9)#,
wherer 0 is the Thomson scattering length (e2/mc2), Z is the
atomic number,f 8(,0) and f 9(.0) are the real and imagi
nary nonresonant dispersion corrections.FLM is the resonant
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X-RAY RESONANT MAGNETIC . . . . I. . . . PHYSICAL REVIEW B 68, 224409 ~2003!
scattering amplitude, as defined in ’ Ref. 6, and has the re
nant denominatorEres2E2 iG/2, which provides the reso
nance when the photon energyE is tuned to the resonan
energyEres close to the absorption edges. The lifetime of t
resonanceG is typically 1-10 eV, so that the necessary e
ergy resolution is easily achievable at synchrotron radia
beamlines.~We assumed thatq, the wave-vector transfer, i
small enough here that the atomic form factor can be ta
as unity.! Equation~3.1! has both real and imaginary~i.e.,
absorptive! components. The latter gives rise to the we
known phenomenon of x-ray magnetic circular or linear
chroism, whereas the real part gives rise to the scatter
Equation~3.1! yields

f ab5Adab2 iB(
g

eabgMg1CMaMb , ~3.2!

where

A5 f 01
3l

8p
~F111F121!,

B5
3l

8p
~F112F121!,

C5
3l

8p
~2F102F112F121!, ~3.3!

anda, b denote Cartesian components, andeabg is the an-
tisymmetric Levi-Civita symbol (exyz5eyzx5ezxy51, exzy
5eyxz5ezyx521, all other eabg50). The dielectric sus-
ceptibility of a resonant magnetic medium is given by

xab
resonant~r !5

4p

k0
2

nm~r ! f ab~r !, ~3.4!

wherek052p/l, nm(r ) is the local number density of reso
nant magnetic atoms, and the variation off ab(r ) with r re-
flects the possible positional dependence of the direction
magnetizationM . The total dielectric susceptibility is give
by

xab~r !5
4p

k0
2 F $2r0~r !r 01Anm~r !%dab

2 iBnm~r !(
g

eabgMg~r !

1Cnm~r !Ma~r !Mb~r !G , ~3.5!

wherer0(r ) represents the electron number density aris
from all the other nonresonant atoms in the medium modi
by their anomalous dispersion corrections when necess
Using the constitutive relationship between the local diel
tric constant tensoreab(r ) andxab(r ),

eab~r !5dab1xab~r !. ~3.6!
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We note that the magnetization gives the dielectric tensor
same symmetry as in conventional magneto-optic the
namely, an antisymmetric component linear in the magn
zation.

IV. THE DISTORTED-WAVE BORN APPROXIMATION
FOR A SINGLE MAGNETIC INTERFACE

The results for specular reflectivity in the BA have be
derived in Ref. 22 and will be also summarized briefly
connection with the cross section in the following pape23

Here we discuss the scattering in terms of the DWBA. Wh
this is more complicated algebraically, it provides a bet
description than the simple kinematical approximation or B
in the vicinity of regions where total reflection or Brag
scattering occurs. This treatment is a generalization of
used in Ref. 20 for charge scattering. The wave equation
electromagnetic waves propagating in an anisotropic m
dium with a dielectric susceptibility tensor given by Eq.~3.5!
may be written as

(
b

@~¹21k0
2!dab2¹a¹b1k0

2xab#Eb~r !50

~a,b5x,y,z!, ~4.1!

whereE(r ) is the electric field vector.
Consider a wave incident, as in Fig. 1, with wave vec

k i in the (x,z) plane (ki ,y50) and polarizationm(m5s or
p), from a nonmagnetic~isotropic! medium for whichxab
5x0dab onto a smooth interface atz50 with a magnetic
medium, for whichxab is constant forz,0.

Let us write forz,0,

xab5x1dab1xab
(2) , ~4.2!

where the termxab
(2) is the part that specifically depends o

the magnetizationM , as defined in Eq.~3.5!. The incident
wave ~chosen for convenience with unit amplitude! may be
written as

Em
i ~r !5êmeiki•r. ~4.3!

This incident wave will, in general, give rise to two spec
larly reflected waves~where the indexm refers tos or p
polarization! and two transmitted~refracted! waves in the
magnetic medium. The complete solution for the elect
field in the case of the smooth magnetic interface is th
given by

E(ki ,m)~r !5êmeiki•r1 (
n5s,p

Rnm
(0)~k i !êneiki

r
•r, z.0,

5 (
j 51,2

Tj m
(0)~k i !êje

iki
t( j )•r, z,0, ~4.4!

wherek i
r is the specularly reflected wave vector in the no

magnetic medium,n denotes the polarization of the appr
priate reflected component, the indexj (51,2) defines the
component of the transmitted wave in the magnetic reson
9-3
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D. R. LEE et al. PHYSICAL REVIEW B 68, 224409 ~2003!
medium with polarizationêj (êj 51,25ê(1) and ê(2), respec-
tively, as defined in Appendix A!, andk i

t( j ) the appropriate
wave vector for that transmitted wave. The polarization v
tors ê may be real or complex allowing for linear or ellipt
cally polarized waves. We denote such states in Eq.~4.4!
quantum mechanically byuk i ,m&.

Rnm
(0) andTj m

(0) denote the appropriate reflection and tran
mission coefficients for the smooth surface and are expre
in terms of 232 matrices using the polarization bases for t
incident and reflected~or transmitted! waves. The polariza-
tion basis is given by (ês , êp), as shown in Fig. 1, for the
waves in the nonmagnetic medium and (ê(1), ê(2)), as de-
fined in Appendix A, for those in the magnetic resonant m
dium, respectively. The convention in which the polarizati
state of the reflected~or transmitted! wave precedes that o
the incident wave is used for the subscripts inRnm

(0) andTj m
(0) ,

and the Greek and Roman letters are used for the polariza
states in the nonmagnetic and magnetic medium, res
tively. The explicit expressions ofRnm

(0) and Tj m
(0) for small

angles of incidence and small amplitudes of the dielec
susceptibility and for special directions of the polarizati
and magnetization~i.e.,M i x̂ as shown in Fig. 1! are given in
Appendix A.

We should mention, however, that these specific con
tions considered in Appendix A~and also in all other appen
dixes! are reasonably satisfied for hard- and medium-ene
x rays and also for soft x rays around transition-metaL
edges with small angles~i.e., whenu i

2!1 for the incidence
re
or

22440
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angleu i). We should also mention that, even whenM is not

parallel to thex̂ axis in Fig. 1, the expressions derived in th
appendices can be still applied by considering only thex
component of the magnetization vectorM . This is because
the y and z components ofM contribute negligibly to the
scattering in comparison with the dominant factorB
5(3l/8p)(F112F121) in Eq. ~3.2! at small angles18 when
uF112F121u@u2F102F112F121u, which is generally satis-
fied for transition-metal and rare-earthL edges.8

We note that the continuity of the fields parallel to th
interface requires that

~k i ! i5~k i
r ! i5@k i

t~ j !# i , ~4.5!

where ( )i and @ # i denote the vector component parallel
the interface.

We now discuss the structurally and magnetically rou
interface. For this purpose we shall assume that the ave
height ~alongz) of the structural and magnetic interfaces
the same, i.e., we ignore the presence of a magnetic d
layer. This may be treated within the DWBA as simply a
other nonmagnetic layer and thus discussed within the
malism for treating multilayers as discussed in Sec. VII. W
can write

xab~r !5xab
(0)~r !1Dab

c ~r !1Dab
m ~r !, ~4.6!

where

xab
(0)~r !5x0dab , z.05x1dab1xab

(2) , z,0,
~4.7!
Dab
c ~r !5~x12x0!dab for 0,z,dzc~x,y! if dzc~x,y!.0

52~x12x0!dab for dzc~x,y!,z,0 if dzc~x,y!,0

50 elsewhere, ~4.8!

and

Dab
m ~r !5xab

(2) for 0,z,dzm~x,y! if dzm~x,y!.0

52xab
(2) , for dzm~x,y!,z,0 if dzm~x,y!,0

50 elsewhere, ~4.9!
e-

om
at,
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dzc(x,y) anddzm(x,y) define the structural~chemical! and
magnetic interfaces, respectively.

We may also define the time-reversed function cor
sponding to a wave incident on the interface with vect
(2k f) and polarizationn as

E(2k f ,n)
T ~r !5êneik f* •r1 (

l5s,p
Rln

(0)* ~2k f !êleik f
r* •r, z.0

5 (
j 51,2

Tj n
(0)* ~2k f !êje

ik f
t* ( j )•r, z,0, ~4.10!
-

where (2k f
r ) is the wave vector of the wave specularly r

flected from (2k f), and@2k f
t ( j )# is the wave vector of one

of the two transmitted waves in the medium emanating fr
(2k f) incident on the surface, as shown in Fig. 2. Note th
for consistency with the conventions used in Eq.~4.4!, the
polarization vectors in Eq.~4.10! are defined in the ordinary
coordinate system where their phases are considered a
the left-to-right direction in Fig. 1. Otherwise, the polariz
tion vectors in Eq.~4.10! should be replaced by their com
plex conjugates.

We have also the conditions
9-4



at

t,
er
w

a
co
,
t

a

.

e

ish

i
x
e

e

e is
etic

be

e-
e

in
Eqs.
.
h

anal-

e

a-

t

un-
r
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~k f ! i5~k f
r ! i5@k f

t ~ j !# i . ~4.11!

The DWBA then yields the differential cross section for sc
tering by the rough interface from (k i ,m) to (k f ,n) as

ds

dV
5

1

16p2
^uT f i u2&, ~4.12!

whereT f i5^k f ,nuTuk i ,m& is the scattering matrix elemen
and ^•••& in Eq. ~4.12! denotes a statistical averaging ov
random fluctuations at the interface. Following Ref. 20,
split the cross section into two parts:

ds

dV
5

1

16p2
u^T f i&u21

1

16p2
@^uT f i u2&2u^T f i&u2#. ~4.13!

The first term in Eq.~4.13! represents the coherent~specular!
part of the scattering, which corresponds to a statistical
eraging of the scattering amplitude, and the second term
responds to the incoherent~diffuse! scattering. In this paper
we shall deal with the first term only, while the diffuse sca
tering will be addressed in the following paper.23

The DWBA consists of approximating the scattering m
trix element by the expression

^k f ,nuTuk i ,m&5k0
2^2k f

T ,nux(0)uEm
i ~r !&

1k0
2^2k f

T ,nuDcuk i ,m&

1k0
2^2k f

T ,nuDmuk i ,m&. ~4.14!

Here uEm
i (r )& denotes the ‘‘pure’’ incoming wave in Eq

~4.3!, u2k f
T ,n& denotes the state in Eq.~4.10!, and the matrix

element involves dot products of the tensor operatorsx(0),
Dc, and Dm with the vector fields^2k f

T ,nu and ^k i ,mu.
While x(0) represents an ideal system with a smooth int
face, Dc and Dm are perturbations onx(0) due to interface
roughnesses.

For the smooth surface, only the first tensor is nonvan
ing, and, following Ref. 20, we can show from Eqs.~4.3! and
~4.10! that

k0
2^2k f

T ,nux(0)uEm
i ~r !&

5 iAk0
2dkixkf x

dkiykf y(j
Tj n

(0)~2k f !

3(
ab

ej a* ~x1dab1xab
(2)!embE

2`

0

dze2 i [kf z
t ( j )2kiz]z,

52iAkizRnm
(0)~k i !dkixkf x

dkiykf y
, ~4.15!

whereA is the illuminated surface area, andRnm
(0)(k i) is the

reflection coefficient for the smooth surface, as defined
Eq. ~4.4!. The details of Eq.~4.15! are presented in Appendi
B. By comparison with Eq.~4.15! for the smooth surface, th
scattering matrix element for the rough surface in Eq.~4.14!
can be analogously defined by

^k f ,nuTuk i ,m&52iAkizRnm~k i !dkixkf x
dkiykf y

, ~4.16!
22440
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where Rnm(k i) denotes the reflection coefficient for th
rough surface.

On the other hand, for the reverse case where a wav
incident from a resonant magnetic medium to a nonmagn
~isotropic! medium, similarly to Eq.~4.15!, the scattering
matrix element for the smooth surface can be shown to

k0
2^2k f

T , j 8ux(0)uk i , j &54iAkiz~ j !Rj 8 j
(0)

~k i !dkixkf x
dkiykf y

,
~4.17!

where the incoming wave from the resonant magnetic m
dium uk i , j & is used instead of the ‘‘pure’’ incoming wav
from the vacuumEm

i (r ) in Eq. ~4.3!. The use of Eqs.~4.15!
and~4.17! in Eqs.~4.14! and~4.12! in the case of the smooth
surface and the derivation of the corresponding reflectivity
the usual manner, as discussed in Ref. 20, shows that
~4.15! and ~4.17! must be identically true. Similarly to Eqs
~4.15! and~4.16!, the scattering matrix element for the roug
surface between reversed layers can be also defined by
ogy from Eq.~4.17! as

^k f , j 8uTuk i , j &54iAkiz~ j !Rj 8 j~k i !dkixkf x
dkiykf y

,
~4.18!

where Rj 8 j (k i) denotes the reflection coefficient for th
rough surface between reversed layers.

V. REFLECTION AND TRANSMISSION COEFFICIENTS
USING THE SELF-CONSISTENT METHOD

To calculate specular reflectivity, we make an approxim
tion in the spirit of Nevot and Croce.24 To evaluate the ma-
trix elements in Eq.~4.14! involving Dab

c andDab
m , we as-

sume forE(k i ,m) in Eq. ~4.4! the functional form forz.0
analytically continued forz,0, while for the time-reversed
stateET(2k f ,n) in Eq. ~4.10! the functional form forz,0
analytically continued toz.0. Then, bearing in mind tha
for specular reflectivityk f5k i

r and using Eq.~4.5!, we obtain
for the statistically averaged amplitude^T f i&,

^k0
2^2k f

T ,nuDc,muk i ,m&&

5 iAk0
2 (

j 51,2
Tj n

(0)~2k f !

3F(
ab

ej a* Dab
c,memb

q1z~ j !
@^e2 iq1z( j )dzc,m(x,y)&21#

FIG. 2. Schematic representation of an ideal interface with
disturbed statesE(k i) andET(2k f). Note two possible waves fo
each of the reflected and transmitted wave vectors.
9-5
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1 (
l5s,p

Rlm
(0)~k i !(

ab

ej a* Dab
c,melb

q2z~ j !

3@^e2 iq2z( j )dzc,m(x,y)&21#G , ~5.1!

where

q1z~ j !5kf z
t ~ j !2kiz , q2z~ j !5kf z

t ~ j !2kiz
r , ~5.2!

andDab
c,m is the value defined for 0,z,dzc,m in Eqs. ~4.8!

and ~4.9!. From Eqs.~4.15!–~4.16! and Eq. ~5.1!, we see
that, at the specular condition, we can write Eq.~4.14! as

Rnm5Rnm
(0)1Unm1(

l
VnlRlm

(0) , ~5.3!

where

Unm5 (
j 51,2

Tj n
(0)~2k f !

2kiz

k0
2

q1z~ j ! F ~x12x0!

3(
a

ej a* ema@e2(1/2)q1z
2 ( j )sc

2
21#

1(
ab

ej a* xab
(2)emb@e2(1/2)q1z

2 ( j )sm
2
21#G , ~5.4!

and replacingq1z , em in Unm by q2z , el producesVml .
Here we made the customary Gaussian approximation for
height fluctuationsdzc,m(x,y), and sc , sm are the root-
mean-squared structural and magnetic roughnesses, re
tively. Note that the correlation termUnm due to the rough-
ness in the reflection coefficient contains only independ
contributions of chemical and magnetic roughnesses
pressed viasc and sm , respectively. According to Eq
~4.13!, the diffuse scattering must contain the cros
correlation component due to the term^uT f i u2&.

A better approximation than Eq.~5.3! may be obtained by
using the rough-interface reflection coefficientRnm instead of
the smooth interfaceRnm

(0) in the wave functions of Eqs.~4.4!
and ~4.10!, thus getting a self-consistent matrix equation
terms of the 232 matrices,R, U, V. This leads to

R5R(0)1U1VR, ~5.5!

whose solution is

R5~12V!21~R(0)1U!. ~5.6!

Similarly, for the reverse interface between upper reson
magnetic and lower nonmagnetic layers, we can have
same solution as Eq.~5.6! from Eqs.~4.17! and ~4.18!. The
explicit expressions ofU, V, R(0) matrices in Eq.~5.6! for
both cases are given in Appendix C.

For nonmagnetic interfaces, the matrices are all diago
(s and p polarizations are decoupled!, and it has been
shown that Eq.~5.6! leads to the familiar Nevot-Croc
form24 for the reflection coefficient, i.e.,

R5R(0)e22ukzuukz
t usc

2
. ~5.7!
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The derivation of this is shown in Appendix D. For the ma
netic interface, this simplified form for the reflection coef
cient does not have any analog. Nevertheless, at sufficie
large values ofqz , the reflectivity takes the familiar Gauss

ian formR(0)e2qz
2seff

2
. However,seff

2 does not always take th
form predicted by the simple kinematical theory@i.e., sc

2 for
s→s reflectivity, sm

2 for s→p reflectivity, and 1
2 (sc

2

1sm
2 ) for (I 12I 2) in the case of circularly polarized x

rays# as we shall see in the numerical example shown bel
which provides a counterillustration of the rule that, at lar
qz , the DWBA becomes identical to the Born approximati
or kinematical limit.

For circularly polarized incident x rays withê6(kW i)
5@ ês(kW i)6 i êp(kW i)#/A2, the reflection amplitudes fors and
p polarization are given by

S Rs

Rp
D 5RS 1

A2

6
i

A2

D , ~5.8!

whereR is the 232 matrix reflection coefficient in Eq.~5.6!.
The reflected intensities without polarization analysis for
outgoing beam,I 5AuRsu21uRpu2, can be then evaluated fo
the opposite helicities of incident beams as

I 12I 252 Im@R11R12* 1R21R22* #, ~5.9!

whereRi j is the i j element of the 232 matrix R.
Since Parratt’s recursive formula for multiple interfac

includes only reflection coefficients, its extension to t
rough interface case does not need the transmission co
cient to account for interface roughness. On the other ha
in our case where the fields are not scalars, the transmis
coefficients are requisite to calculate recursive 232 matrix
formulas for multiple magnetic interfaces, which will be di
cussed in Sec. VII. For completeness, therefore, let us n
calculate the transmission coefficientTj m from a rough inter-
face. In the spirit of Ref. 25, we assume forE(k i ,m) and
ET(2k f , j ) the functional forms analytically continued bot
for z.0 and forz,0 as follows:

E~k i ,m!5 (
j 851,2

Tj 8m
(0)

~k i !êj 8e
iki

t( j 8)•r, ~5.10!

ET~2k f , j !5 (
n5s,p

Tn j
(0)* ~2k f !êne2 ik f* •r, ~5.11!

where Tn j
(0)* (2k f) in Eq. ~5.11! denotes the transmissio

coefficient ‘‘from’’ a magnetic~anisotropic! medium ‘‘to’’ a
nonmagnetic~isotropic! one, whose explicit form is given in
Appendix A. For the smooth surface, the scattering ma
element between the eigenstatesu2k f

T , j & anduk i ,m& can be
then written as
9-6
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k0
2^2k f

T , j ux(0)uk i ,m&

5 iAk0
2dkixkf x

dkiykf y

3(
n

Tn j
(0)~2k f !(

j 8
Tj 8m

(0)
~k i !

3(
ab

ena* ~x1dab1xab
(2)!ej 8bE

2`

0

dze2 i [ 2kf z2kiz
t ( j 8)]z,

54iAkiz
t ~ j !Tj m

(0)~k i !dkixkf x
dkiykf y

, ~5.12!

whereTj m
(0)(k i) is the transmission coefficient for the smoo

surface, as defined in Eq.~4.4!. The details of Eqs.~5.12! are
given in Appendix B.

In comparison with Eq.~5.12! for the smooth surface, th
scattering matrix element for the rough surface, as show
Eq. ~4.14!, can be analogously defined by

^k f , j uTuk i ,m&54iAkiz
t ~ j !Tj m~k i !dkixkf x

dkiykf y
,

~5.13!

where Tj m(k i) denotes the transmission coefficient for t
rough surface.

For the statistically averaged amplitude^T f i&, we obtain

^k0
2^2k f

T , j uDc,muk i ,m&&

5 iAk0
2(

n
Tn j

(0)~2k f !(
j 8

Tj 8m
(0)

~k i !(
ab

ena* Dab
c,mej 8b

q3z~ j 8!

3@^e2 iq3z( j 8)dzc,m(x,y)&21#, ~5.14!

and

q3z~ j 8!52kf z2kiz
t ~ j 8!. ~5.15!

From Eqs.~5.12!–~5.14!, we see that we can write th
scattering matrix element in the DWBA, as shown in E
~4.14!, as

Tj m5Tj m
(0)1 (

j 851,2

Vj j 8
8 Tj 8m

(0) , ~5.16!

where

Vj j 8
8 5(

n

Tn j
(0)~2k f !

4kiz
t ~ j !

k0
2

q3z~ j 8!
F ~x12x0!

3(
a

ena* ej 8a@e2(1/2)q3z
2 ( j 8)sc

2
21#

1(
ab

ena* xab
(2)ej 8b@e2(1/2)q3z

2 ( j 8)sm
2
21#G . ~5.17!

In the same way as we did for the reflection coefficie
using the rough-interface transmission coefficientTj m in-
stead of the smooth interfaceTj m

(0) in the right-hand side of
22440
in

.

,

Eq. ~5.16!, thus getting a self-consistent matrix equation
terms of the 232 matrices,T, V8, gives

T5T(0)1V8T, ~5.18!

whose solution is

T5~12V8!21T(0). ~5.19!

Similarly, for the reverse interface between upper reson
magnetic and lower nonmagnetic layers, we can also h
the same solution as Eq.~5.19!. The explicit expressions o
V8 andT(0) matrices in Eq.~5.19! for both cases are given in
Appendix C.

For nonmagnetic interfaces, it is shown in Appendix
that Eq.~5.19! reduces to

T5T(0)e(1/2)(ukzu2ukz
t u)2sc

2
, ~5.20!

which has been found by Vidal and Vincent.26

VI. NUMERICAL EXAMPLES FOR A SINGLE MAGNETIC
SURFACE

We now illustrate numerical examples of the above f
mulas calculated for a Gd surface with varying degrees
structural and magnetic roughness. We have considered
the case where the magnetization vector is aligned along
sample surface in the scattering plane in order to enhance
magnetic effect.

Figure 3 shows the x-ray resonant magnetic reflectivit
calculated at the GdL3 edge~7243 eV! from Gd surfaces
with different interfacial widths for structural (sc) and mag-
netic (sm) interfaces. In Figs. 3~a!–3~c!, the interfacial
width of the structural interface is larger than that of t
magnetic interface, that is,sc58 Å and sm53 Å. On the
other hand, in Figs. 3~d!–3~f!, the interfacial widths are re
versed, that is,sc53 Å and sm58 Å. In the kinematical
approximation~BA! s→s scattering~solid lines in the top
panels of Fig. 3! corresponds to pure charge scattering, a
s→p scattering~dashed lines in the top panels of Fig. 3! to
pure magnetic scattering, and the differences between
reflected intensities for right- (I 1) and left- (I 2) circularly
polarized incident beams~circles in Fig. 3! correspond to the
interferences between charge and magnetic scattering.

Kinematically, the reflected intensities from each scatt
ing channel are proportional to a simple Gaussian fo
exp(2s2qz

2), wheres is the interfacial width of correspond
ing scattering channel, i.e.,sc for I s→s , sm for I s→p , and
A(sc

21sm
2 )/2 for (I 12I 2). The middle panel of Fig. 3

shows natural logarithms of the reflectivities from rough
terfaces normalized to those from ideal systems with
roughness as a function of the square of the wave vector,qz

2 ,
whose slopes are then equal to the squares of the interf
widths for their corresponding scattering channels. In F
3~b!, the slopes obtained from our dynamical calculation
the case ofsc58 Å and sm53 Å show good agreemen
with the kinematical results mentioned above. On the ot
hand, in Fig. 3~e!, the slopes ofI s→p and (I 12I 2) for the
opposite case,sc53 Å and sm58 Å, are not equal to the
9-7
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FIG. 3. Calculated x-ray reso
nant magnetic reflectivities at th
Gd L3 edge ~7243 eV! from Gd
surfaces with different interfacia
widths for structural (sc) and
magnetic (sm) interfaces.~a!–~c!
sc58 Å, sm53 Å; ~d!–~f! sc

53 Å, sm58 Å; ~g!–~i! same as
~d!–~f!, but with a 20 Å magneti-
cally dead layer. Top panel: re
flected intensities of thes→s
~solid lines! and s→p ~dashed
lines! channels, and the differ-
ences between the reflected inte
sities for right- (I 1) and left- (I 2)
circularly polarized incident
beams ~circles!. Middle panel:
natural logarithms of the reflec
tivities with interface roughnesse
normalized to those from idea
systems without roughness as
function of the square of the
wave-vector transfer. Solid
dashed, and dot-dashed lines re
resent s→s and s→p scatter-
ing, and the differences betwee
I 1 and I 2 , respectively. Bottom
panel: normalized scattering den
sity profiles for charge ~solid
lines! and magnetic~dashed lines!
scattering.
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squares of their corresponding interfacial widths but follo
the slope ofI s→s at highqz’s.

This indicates that the kinematical argument mention
above, i.e., one-to-one correspondence such ass→p chan-
nel to pure magnetic scattering, is no longer valid for suc
case of larger magnetic interfacial width, as shown in F
3~e!. In other words, both contributions from charge a
magnetic scattering should be taken into account for ev
scattering channel, which is naturally included in the d
namical theory~such as our self-consistent method!. In the
case shown in Fig. 3~e!, since the charge-scattering chann
is much stronger than the magnetic-scattering channel
also drops off much more slowly withqz due to decreased
roughness, there is conversion ofs→p polarization at larger
qz even when the ‘‘pure’’ magnetic scattering has beco
negligible in the kinematical limit, because of magnetic sc
tering out of the still strong charge channel. Thus thes
→p and (I 12I 2) reflections will asymptotically decay at
rate governed by the decay of the charge channel, whic
determined bysc alone.

However, it is not easy to find a physical system wher
22440
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a
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l
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e
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a

magnetic interfacial width is larger than the structural one
the same interface, as shown in Fig. 3~f!. Instead, such a
rougher magnetic interface can occur in a magnetic syst
where a magnetically ‘‘dead’’ layer exists near the top s
face and so the average position of the magnetic interf
may not coincide with that of the structural interface,
shown in Fig. 3~i!. In Fig. 3~g! (I 12I 2) ~circles! shows an
oscillation due to a magnetically dead layer with a thickne
of 20 Å. In this case, the slopes in Fig. 3~h! follow again the
kinematical result mentioned above because the magneti
terface and the structural one are separated spatially.

As a further check on our calculations, we have calcula
the reflectivity by dividing the error-function profile, a
shown in the bottom panel of Fig. 3, into many very th
slices and using the 232 recursive matrix formulas withou
any roughness assumptions.18 We found that the results usin
this slice method are exactly the same as those from
self-consistent method assuming Gaussian height distr
tions in Fig. 3. Thus our self-consistent method based on
DWBA produces very accurate results for the x-ray reson
magnetic reflectivity and is much faster computationally.
9-8
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VII. MULTIPLE MAGNETIC INTERFACES

For a multilayer with multiple interfaces, each layer c
be characterized by its dielectric susceptibility tensorxab,n
for the nth layer, which can bexab,n5xndab for nonmag-
netic ~isotropic! layers andxab,n5xndab1xab,n

(2) for mag-
netic ~anisotropic! layers. For each rough interface, we c
use the self-consistent DWBA to define the reflection a
transmission coefficients, in the same way as in Sec
which are given by

Rn5~ I2Vn!21~Rn
(0)1Un!5M̃n

rt ,

Tn5~ I2V8n!21Tn
(0)5M̃n

tt , ~7.1!

whereRn , Tn are the reflection and transmission coefficie
for the nth rough interface, andRn

(0) , Tn
(0) are those for the

corresponding smooth interface. The explicit expressions
Rn

(0) , Tn
(0) , Un , Vn , andV8n matrices in Eq.~7.1! are given

in Appendix C, depending on whether the upper and low
layers on thenth interface are nonmagnetic or magnetic la
ers, respectively.

By analogy with the recursion relation for the coupl
waves derived for the smooth interfaces in Appendix
~originally developed by Stepanov and Sinha18!, introducing
W̃pq matrices for the rough interfaces, we may derive
recursion relation analogous to Eq.~E5!, obtaining

W̃n11
tt 5ÃnW̃n

tt ,

W̃n11
tr 5M̃n11

tr 1ÃnW̃n
tr M̃ n11

rr ,

W̃n11
rt 5W̃n

rt1B̃nM̃n11
rt W̃n

tt ,

W̃n11
rr 5B̃nM̃n11

rr , ~7.2!

whereÃn and B̃n are defined by

Ãn5M̃n11
tt ~12W̃n

rt M̃ n11
rt !21,

B̃n5W̃n
rr ~12M̃n11

rt W̃n
tr !21. ~7.3!

Finally, the specular reflectivity of a magnetic multilay
with rough interfaces can be obtained by

R05W̃N
rtT0 . ~7.4!

To calculate the sum and difference in the reflectivities
(1) and (2) circularly polarized incident x rays, substitu
ing T051/A2(1,6 i ) in a similar way to Eqs.~5.8! and~5.9!
yields

I 11I 25u~W̃N
rt !11u21u~W̃N

rt !12u21u~W̃N
rt !21u21u~W̃N

rt !22u2,

I 12I 252 Im@~W̃N
rt !11~W̃N

rt !12* 1~W̃N
rt !21~W̃N

rt !22* #,
~7.5!

where (W̃N
rt) i j is the i j element of the 232 matrix W̃N

rt .
The above suggested approach to calculating the eff

of roughness in multilayers on specular reflectivity is an
22440
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proximation analogous to those used previously in sev
publications on charge-only roughness.21,27–29 Basically, it
corresponds to averaging the reflection coefficient~or the
scattering matrix! of each interface over the interface roug
ness. The comparison with the results of rigorous ‘‘slici
method’’ made in Ref. 29 has proven that such an appro
mation works very well. A possible reason for the excelle
validity of this approximation is that the roughness effect
mainly displayed at greater incidence angles, where the
flection is small and the multiple scattering can be neglec
~the total reflection amplitude is a linear sum of contributio
from individual interfaces!. Note that, since we are consid
ering the coherent scattering which involves only the sta
tical average of the scattering amplitude in Eq.~4.13!, there
is no contribution from any cross-interface correlations
roughness. This will not be the case with diffuse~off-
specular! scattering.23

VIII. NUMERICAL EXAMPLES FOR MULTIPLE
INTERFACES

We present here numerical examples for x-ray reson
magnetic reflectivity from a Gd/Fe multilayer using th
above formulas. Since Gd/Fe multilayers~ML’s ! have vastly
different Curie temperatures and strong interfacial coupl
of Gd and Fe, these systems give rise to complex magn
structures depending on the layer thickness, temperature
applied magnetic field.30 Due to the advantage of GdL-edge
resonances available in the hard x-ray regime, sev
experimental studies for these Gd/Fe ML’s have be
performed using x-ray resonant magnetic reflectiv
measurements.31,13,14 Again, we have considered only th
case where the magnetization vectorM i x̂.

We have used the experimentally determined values
charge and magnetic resonant scattering amplitudes,f c,m

5 f c,m8 1 i f c,m9 , at the resonant energy. The energy dep
dences of the absorption coefficient for opposite helicit
m6(E), were measured from a@Gd(51 Å)/Fe(34 Å)#15
multilayer, which will be discussed below as an experimen
example. The edge-step normalizedf c,m9 were obtained from
the charge and magnetic absorption coefficients,mc,m @mc
5(m11m2)/2, mm5m12m2], through the optical theo-
rem, f c,m9 }mc,m . Their absolute values were determined u
ing the tabulated bare-atom scattering amplitudes away f
resonance. Real parts were obtained from differen
Kramers-Kronig transforms of imaginary parts. Figures 4~a!
and 4~b! show the charge and magnetic scattering amplitu
around the GdL2 edge obtained in such absorption measu
ments. These values are in good agreement with the ca
lated ones from the listed values ofA and B in Eq. ~3.3!
obtained from Ref. 8. For consistency of the definitions
should be mentioned that thef c,m9 used here correspond t
Im@A,B# in Eq. ~3.3!, whereas thef c,m8 correspond to
2Re@A,B#, respectively.

Figure 5 shows the calculated x-ray resonant magn
reflectivities from a@Gd(51 Å)/Fe(34 Å)#15 multilayer for
different incident x-ray energies indicated in Fig. 4:~a! 7926
eV, ~b! 7929 eV,~c! 7931 eV, and~d! 7935 eV. The lines and
9-9
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symbols represent the sum and difference in the refle
intensities for (1) and (2) circularly polarized incident x
rays, respectively, calculated using Eq.~7.5!. Since the
Gd/Fe multilayer was assumed to be sandwiched betw

FIG. 4. Charge~a! and magnetic~b! x-ray scattering amplitudes
f c,m , around the GdL2 edge obtained from the absorption measu
ments for a@Gd(51 Å)/Fe(34 Å)#15 multilayer. The vertical lines
indicate the photon energies, where the x-ray resonant mag
reflectivities in Fig. 5 were calculated.

FIG. 5. Calculated x-ray resonant magnetic reflectivities from
@Gd(51 Å)/Fe(34 Å)#15 multilayer for different incident photon en
ergies indicated in Fig. 4:~a! 7926 eV,~b! 7929 eV,~c! 7931 eV,
and ~d! 7935 eV. Both structural~charge! and magnetic interfacer
oughnesses aresc,m54.7 Å and 3.6 Å for Fe/Gd and Gd/Fe inte
faces, respectively. The solid lines represent (I 11I 2) intensities
and open~filled! circles represent the positive~negative! values of
(I 12I 2) intensities.
22440
d

en

Nb buffer ~100 Å! and cap~30 Å! layers, the Kiessig fringes
between the multilayer peaks in (I 11I 2) intensities result
from the interference of the scattering of Nb layers and th
show little energy dependence around the Gd absorp
edge. On the other hand, (I 12I 2) intensities around the
multilayer peaks show a clear energy dependence in s
and magnitudes relative to (I 11I 2) intensities. In Figs. 5~a!
and 5~d! at which energiesf m9 becomes much smaller tha
f m8 , the signs and relative magnitudes of (I 12I 2) intensities
follow simply the energy dependence off m8 in Fig. 4~b!, as
expected in the kinematical approximation.22 At the energies
close to the absorption edge wheref m9 cannot be neglected
however, one can hardly expect the signs and magnitude
(I 12I 2) intensities to be obtained directly from the valu
of f m8 and f m9 in Fig. 4~b!. Therefore, quantitative analysis o
x-ray resonant magnetic reflectivity data at the resonant
ergy requires accurate calculation taking into account refr
tion and multiple scattering effects using dynamical theo
such as our self-consistent method presented above. In
ticular, this indicates the necessity of going beyond
simple Born approximation and to treat resonant magn
scattering in the soft x-ray regime, where in fact the imp
tant L edges of most magnetic transition metals lie.

In order to study the effect of the magnetic roughne
amplitude, (I 12I 2) intensities for two cases,sm,sc and
sm.sc , have been calculated, as shown in Fig. 6. The c
culations forsm5sc have been shown in Fig. 5. For a
cases, the charge roughness amplitudes were assumed
sc,Fe/Gd54.7 Å andsc,Gd/Fe53.6 Å. At the energy of 7935
eV, the intensities of (I 12I 2) around the multilayer peak
are proportional to a simple Gaussian form, exp(2s2qz

2), as
shown in Figs. 5~d!, 6~a!, and 6~b!. This is consistent with
the kinematical calculations,22 and s for (I 12I 2) corre-

-

tic

a

FIG. 6. Calculations with different magnetic interface roug
nesses:~a! and~c! sm52.1 Å, and~b! and~d! sm56.2 Å. All other
parameters and symbols are the same as those in Fig. 5.
9-10
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sponds toA(sc
21sm

2 )/2 as given by the kinematical argu
ment. On the other hand, at the energy of 7929 eV wheref m9
cannot be neglected, such a kinematical argument is
longer valid. Comparing Figs. 5~b!, 6~c!, and 6~d!, we can
see that the magnitudes of (I 12I 2) peak intensities do no
follow a Gaussian form, exp(2s2qz

2), but their signs change
from negative~filled circles! to positive ~open circles! val-
ues. This indicates that (I 12I 2), which is known to be the
charge-magnetic interference scattering in the kinemat
theory,7 is sensitive even to the interference between cha
and magnetic roughness amplitudes. However, it should
mentioned again that this result cannot be reproduced by
kinematical calculation but only by the dynamical one p
sented above.

Let us now consider the case where the magnetic struc
in the resonant layers may not coincide with the chem
structure. For example, the ferromagnetic moments in
layers near Gd/Fe interfaces can be induced by the adja
ferromagnetic Fe layers above the Curie temperature of
atoms,13,14 or a magnetically ‘‘dead layer’’ may exist at a
interface between a ferromagnetic layer and an antiferrom
netic layer. Here we assume simply three different magn
zation depth profiles in the Gd layers of a Gd/Fe multilay
as shown in Fig. 7: uniform magnetization~a!, ferromagnetic
moments only near the Gd/Fe interfaces~b!, ferromagnetic
moments near the centers of Gd layers between magneti
dead layers~c!.

Figure 8 shows the results of calculations of x-ray re
nant magnetic reflectivities from@Gd(51 Å)/Fe(34 Å)#15
ML’s with the different magnetic structures of Fig. 7. W
assumed all magnetic roughness amplitudes ofsm54.2 Å
~effectively same assc) and the photon energy ofE
57929 eV. In Figs. 8~a!–8~c!, Gd layers were assumed t
be magnetized only near the Gd/Fe interfaces@model ~b!#,
and the thickness of each magnetized layer was assum
be 4.6 Å~a!, 8.4 Å ~b!, and 12.8 Å~c!. On the other hand, in
Figs. 8~d!–8~f!, Gd layers were assumed to be magnetized
the middle of each Gd layer and sandwiched between m
netically dead layers@model ~c!#, and the thickness of eac
dead layer was assumed to be 4.6 Å~d!, 8.4 Å ~e!, and 12.8
Å ~f!.

Unlike the case of uniform magnetization@model ~a! in
Fig. 7# shown in Fig. 5~b!, (I 12I 2) intensities in Fig. 8 for
models~b! and ~c! show no suppression in peak intensiti
due to the charge-magnetic interference, as discussed a

FIG. 7. Models of magnetic structures in Gd layers. Unifo
magnetization~a!, ferromagnetic moments only near the Gd/Fe
terfaces~b!, and ferromagnetic moments near the centers of
layers between magnetically dead layers~c!. While interfaces with
‘‘ sc , sm’’ represent both structurally and magnetically mixed inte
faces, interfaces with ‘‘sc’’ ~or ‘‘ sm’’ ! represent purely structura
~or magnetic! interfaces.
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This may be ascribed to a spatial separation between
charge and magnetic interfaces in models~b! and ~c!, as
shown in Fig. 7.

In addition, the signs and relative magnitudes of (I 1

2I 2) intensities at the multilayer peaks change remarka
as the thicknesses of magnetized layers change. This p
has been already noticed by authors of Refs. 15 and 17
general, the peak intensities of the (m1n)th order ML peak
and its multiple orders are weak compared to other p
intensities when the thickness ratio between two constitu
layers is n/m. For example, in our Gd~51 Å!/Fe~34 Å!
multilayer, the fifth peak corresponds to such a suppres
peak. Therefore, different thicknesses of magnetic lay
readily change the order of the suppressed peak inI 1

2I 2) intensities, as shown in Fig. 8. On the other hand,
signs of (I 12I 2) intensities for models~b! @Figs. 8~a!–8~c!#
and ~c! @Fig. 8~d!–8~f!# are opposite to each other, becau
their magnetic structures are exactly reversed.

IX. EXPERIMENTS

X-ray resonant magnetic reflectivities were measu
from an Fe(34 Å)/@Gd(51 Å)/Fe(34 Å)#15 multilayer. The
multilayer was sputtered onto a Si substrate using Nb bu
~100 Å! and cap~30 Å! layers. superconducting quantu
interference device magnetometry and XMCD measurem
show that the multilayers couple antiferromagnetically at
Gd/Fe interfaces and have coercive fields,50 Oe at 300 K.
X-ray measurements were performed at sector 4 of the
vanced Photon Source at Argonne National Laboratory. U

d

FIG. 8. Calculated (I 12I 2) intensities for different magnetiza
tion depth profiles in Gd layers. In~a!–~c! ferromagnetic layers
exist only near the Gd/Fe interfaces@Fig. 7~b!#, and their layer
thicknesses are 4.6 Å~a!, 8.4 Å ~b!, and 12.8 Å~c!. In ~d!–~f!
ferromagnetic layers exist in the middle of Gd layers and are sa
wiched between magnetically dead layers@Fig. 7~c!#, and the layer
thicknesses of the dead layers are 4.6 Å~d!, 8.4 Å ~e!, and 12.8 Å
~f!. All magnetic roughness amplitudes aresm54.2 Å, which is
effectively same assc , and the photon energy isE57929 eV. All
other parameters and symbols are same as those in Fig. 5.
9-11
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FIG. 9. ~Color! (I 11I 2) ~a! and (I 12I 2) ~b! intensities measured~symbols! from a Fe(34 Å)/@Gd(51 Å)/Fe(34 Å)#15 multilayer near
the GdL2 edge~7929 eV!. The lines represent the best theoretical fits with the model~b! in Fig. 7. Note that the colors of symbols and line
in (I 12I 2) intensities are different for opposite signs of the intensities.
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dulator radiation was monochromatized with double Si~111!
crystals and its polarization converted from linear to circu
with a diamond~111! quarter-wave plate operated in Brag
transmission geometry.32 The sample was placed in aB
52.1 kG field parallel to its surface and in the scatteri
plane. Specular magnetic reflectivity was measured at ro
temperature with a photon energy near the GdL2 resonance
~7929 eV! across multilayer Bragg peaks by switching t
helicity of the incident radiation at each scattering vec
qz5(4p/l)sinu, with u being the grazing incidence angle

Figure 9 shows specular reflectivity curves obtained
adding @~a!, (I 11I 2)] and subtracting@~b!, (I 12I 2)] re-
flected intensities for opposite helicites of the incoming
rays. Symbols represent measurements and solid lines re
sent the fits calculated using Eq.~7.5!. From the fit for (I 1

1I 2) intensities, we obtained the layer thicknessesdGd
550.7460.09 Å anddFe533.9860.09 Å, and the rough-
ness amplitudes of charge interfacessc,Fe/Gd54.760.1 Å
andsc,Gd/Fe53.660.1 Å. From the fit for (I 12I 2) intensi-
ties, we found that the Gd layers were fully magnetized o
near the Gd/Fe interfaces at room temperature, which
above the bulkTc of Gd. This magnetization is induced by
22440
r

m

r

y

re-

y
is

strong antiferromagnetic exchange interaction with the m
netically ordered Fe layers.30 From the best fit, the thicknes
of the ferromagnetic Gd layer was estimated to be
60.3 Å, which is consistent with our previous work.14 Mag-
netic roughness amplitudes for Gd/Fe~Fe/Gd! and Gd-
ferromagnetic/Gd-paramagnetic interfaces were estimate
be 4.260.1 Å and 4.660.1 Å, respectively.

X. CONCLUSIONS

The formulas for x-ray resonant magnetic specular refl
tivity have been derived for both single and multiple inte
faces using the self-consistent method in the framework
the DWBA. For this purpose, we have defined a structu
and a magnetic interface to represent the actual interfa
The well-known Nevot-Croce expression for the x-r
specular reflectivity from a rough surface has been gene
ized and examined for the case of a magnetically rough
face. The formalism has been generalized to the case of m
tiple interfaces, as in the case of thin films or multilaye
Numerical illustrations have been given for typical examp
of each of these systems and compared with the experime
9-12
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data from a Gd/Fe multilayer. We have also presented
explicit expressions in the small-angle approximation, wh
are readily applicable to transition-metal and rare-earthL
edge resonant magnetic reflectivities. The code for the ca
lations in this paper is also available in C language from o
of the authors~D.R.L.!.
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APPENDIX A: EXPLICIT EXPRESSIONS FOR Rnµ
„0… , Tjµ

„0…

USING 2Ã2 MATRIX FORMULAS

To calculate the explicit expressions forRnm
(0) andTj m

(0) in
Eq. ~4.4!, we follow Stepanov and Sinha’s approach18 devel-
oped for magnetic resonant reflections from ideally smo
interfaces. The electric fieldEz,0(r ) inside the magnetic me
dium with a dielectric susceptibility tensor given by Eq.~4.2!
can be represented as

Ez,0~r !5Ee2 ik0uz1 ik0cosu i x, ~A1!

where u i is the incidence angle, as shown in Fig. 1. T
parameteru can be a complex number due to absorption
total reflection. Substituting this in the wave equation E
~4.1!, we obtain

(
b

@~sin2u i2u2!dab1nanb1xab#Eb50, ~A2!

wherena5ka /k0, i.e., nx5cosui , ny50, andnz52u.
If we consider the case where the magnetization vecto

aligned along the sample surface in the scattering plane,
M i x̂ in Fig. 1, the tensorxab of a resonant magnetic medium
can be written from Eq.~3.5! as

~xab!M i x̂5S x1dab2 iB8(
g

eabgMg1C8MaMbD
M i x̂

5S x11C8 0 0

0 x1 2 iB8

0 iB8 x1

D , ~A3!

where

x152
4p

k0
2

r0~rW !r 01
4p

k0
2

Anm~rW !,

B85
4p

k0
2

Bnm~rW !Mx , C85
4p

k0
2

Cnm~rW !Mx
2 . ~A4!

Assuming that the incidence angleu i is small (sinui'ui!1
and nx5cosui'1) and even at the resonancexab remain
small (uxabu!1), and inserting Eq.~A3! into Eq. ~A2!, the
dispersion equation for a nontrivial solution of Eq.~A2! can
be then approximated by
22440
e
h

u-
e

-

h

r
.

is
e.,

I 1 0 2u

0 u i
21x12u2 2 iB8

2u iB8 u i
21x1

I 50, ~A5!

and the respective roots areu(1,2,3,4)56Au i
21x16B8. Two

roots of theseu( j )’s with Im@u(1,2)#.0 and the other two
roots with Im@u(3,4)#,0 correspond to transmitted and r
flected waves in the medium, respectively. For each of
waves Eqs.~A2! and ~A5! give (j 51, . . . ,4),

Ez
( j )5

u i
21x12u( j )2

iB8
Ey

( j ) ,

Ex
( j )5u( j )

u i
21x12u( j )2

iB8
Ey

( j ) , Ey
( j )5Es

( j ) . ~A6!

And if we denote

u(1)5Au i
21x11B8[u1 , u(2)5Au i

21x12B8[u2 ,

u(3)52u1 , u(4)52u2 , ~A7!

we may then write

Ez
(1)5 iEs

(1) , Ez
(2)52 iEs

(2) , Ez
(3)5 iEs

(3) ,

Ez
(4)52 iEs

(4) , Ex
( j )5u( j )Ez

( j ) ~ j 51, . . . ,4!. ~A8!

Sinceuu( j )u!1, Ex
( j ) can be neglected, then the polarizatio

of the wavesê( j ) in the magnetic resonant medium can
reduced to the circular polarizations

ê( j )'Ey
( j )ês1Ez

( j )êp ~ ŷ5ês , ẑ'êp!,

ê(1)5ês1 i êp5ê(3), ê(2)5ês2 i êp5ê(4). ~A9!

If the wave fieldEz.0(r ) with the incident and specularly
reflected waves inside the nonmagnetic~isotropic! medium
can be represented as

Ez.0~r !5~E0e2 ik0u0z1EReik0u0z!eik0cosu i x

~u05Au i
21x0!, ~A10!

the boundary conditions for the waves,Ez.0(r ) andEz,0(r )
in Eqs.~A1! and~A10! must be satisfied for the lateral com
ponentsEi andHi of electric fields and magnetic fields, re
spectively. SinceH}@ k̂3E#, this gives

u0E0p2u0ERp5(
j

Ex
( j ) , ~A11!

E0s1ERs5(
j

Ey
( j ) ,

u0E0s2u0ERs5u( j )(
j

Ey
( j ) ,
9-13
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E0p1ERp5(
j

~u( j )Ex
( j )1nxEz

( j )!'(
j

Ez
( j ) ,

where the approximation in the last equation was obtained
uu( j )u!1 andnx'1. Using Eqs.~A6!–~A8!, the above equa
tions can be expressed in the 434 matrix form

S 1 0 1 0

0 1 0 1

u0 0 2u0 0

0 u0 0 2u0

D S E0s

E0p

ERs

ERp

D
5S 1 1 1 1

i 2 i i 2 i

u1 u2 2u1 2u2

iu1 2 iu2 2 iu1 iu2

D S Es
(1)

Es
(2)

Es
(3)

Es
(4)

D . ~A12!

Representing the waves as the vectorsT05(E0s ,E0p), R0

5(ERs ,ERp), T15(Es
(1) ,Es

(2)), and R15(Es
(3) ,Es

(4)), the
434 matrices in Eq.~A12! can be reduced into four 232
blocks

S T0

R0
D 5S Xtt Xtr

Xrt Xrr D S T1

R1
D , ~A13!

whereXtt, Xtr , Xrt , Xrr can be obtained by multiplying th
inverse of the 434 matrix at the left side of Eq.~A12! onto
both sides. Since the reflected waves inside the medium
ish for a single surface,E(3)5E(4)50 @i.e., R15(0,0)], the
‘‘unknown’’ wavesR0 andT1 in Eq. ~A13! can be expresse
via the ‘‘known’’ wavesT0 andR1 as

S T1

R0
D 5S Mtt Mtr

Mrt Mrr D S T0

R1
D , ~A14!

where

Mtt5~Xtt!21, Mtr52~Xtt!21Xtr ,

Mrt5Xrt~Xtt!21, Mrr 5Xrr 2Xrt~Xtt!21Xtr .
~A15!

From Eqs.~A12!–~A15!, the explicit expressions forMn→r
pq

matrices are given by

Mn→r
tt 5S u0

u01u1
2 i

u0

u01u1

u0

u01u2
i

u0

u01u2

D 5Tj m
(0)~k i !,

Mn→r
tr 5S u12u0

u01u1

0

0
u22u0

u01u2

D ,
22440
y

n-

Mn→r
rt 5S u0

22u1u2

~u01u1!~u01u2!
i

u0~u12u2!

~u01u1!~u01u2!

2 i
u0~u12u2!

~u01u1!~u01u2!

u0
22u1u2

~u01u1!~u01u2!

D
5Rnm

(0)~k i !,

Mn→r
rr 5S 2u1

u01u1

2u2

u01u2

i
2u1

u01u1
2 i

2u2

u01u2

D , ~A16!

where thei j elements ofM pq matrices are defined by Fig
10, and the subscriptn→r represents the incidence from
nonmagnetic medium into a resonant magnetic one. From
definition of M pq matrices in Eq. ~A14!, Rnm

(0)(k i) and
Tj m

(0)(k i) correspond toMn→r
rt and Mn→r

tt , respectively. For
the time-reversed waves incident with vector (2k f), scatter-
ing angleu f , and polarizationn, Mn→r

pq (2k f) matrices are
same as the case of (k i ,m), but replacingi by (2 i ) in Eq.
~A16!, i.e.,

Mn→r
pq ~2k f !5Mn→r

pq ~k i ; i↔2 i ! ~pq5tt,tr ,rt ,rr !,

Tj m
(0)~2k f !5Tj m

(0)~k i ; i↔2 i !,

Rnm
(0)~2k f !5Rnm

(0)~k i ; i↔2 i !. ~A17!

For completeness, let us now consider the reverse c
where a wave is incident ‘‘from’’ a magnetic~anisotropic!
medium withxab5x1dab1xab

(2) ‘‘into’’ a nonmagnetic one
with xab5x0dab . The explicit forms ofMr→n

pq matrices can
be evaluated by starting with reversing both sides in E
~A12! and representing the waves asT05(Es

(1) ,Es
(2)), R0

5(Es
(3) ,Es

(4)), T15(E0s ,E0p), andR15(ERs ,ERp) in Eq.
~A13!. Then, Mr→n

pq matrices can be obtained straightfo
wardly by

Mr→n
tt 5Tm j

(0)~k i !5Mn→r
rr , Mr→n

tr 5Mn→r
rt ,

Mr→n
rt 5Rj j 8

(0)
~k i !5Mn→r

tr , Mr→n
rr 5Mn→r

tt , ~A18!

where the subscriptr→n denotes the incidence from a res
nant magnetic medium into a nonmagnetic one. In the sa

FIG. 10. The representation chosen for the elements ofM pq

matrices with the polarization bases of the incident and reflected~or

transmitted! waves. The polarization basis is given by (ês , êp), as
shown in Fig. 1, for the waves in the nonmagnetic medium a

(ê(1), ê(2)), as defined in Appendix A, for those in the resona
magnetic medium, respectively.
9-14
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way as in Eq.~A17!, theMr→n
pq (2k f) matrices for the time-

reversed waves can be also obtained by replacingi by
(2 i ) in Eq. ~A18!.

Finally, let us also consider the magnetic-magne
~resonant-resonant! interface between upper (xab,up

5xupdab1xab,up
(2) ) and lower (xab,dw5xdwdab1xab,dw

(2) )
resonant magnetic layers. By employing the 434 matrices
involving resonant magnetic medium to both sides of E
~A12!, the explicit expressions ofMr→r

pq can be given by

Mr→r
tt 5S 2u1

up

u1
dw1u1

up
0

0
2u2

up

u2
dw1u2

up

D ,

Mr→r
tr 5S u1

dw2u1
up

u1
dw1u1

up
0

0
u2

dw2u2
up

u2
dw1u2

up

D , Mr→r
rt 52Mr→r

tr ,

Mr→r
rr 5S 2u1

dw

u1
dw1u1

up
0

0
2u2

dw

u2
dw1u2

up

D , ~A19!

whereu6
up,dw5Au i

21xup,dw6Bup,dw8 and Bup,dw8 was defined
in Eq. ~A4!. Note that theseMr→r

pq matrices for the magnetic
magnetic interfaces are applicable to the nonmagne
nonmagnetic~nonresonant-nonresonant! interfaces simply by
settingBup,dw8 to be zero.

APPENDIX B: EVALUATION OF THE MATRIX
ELEMENTS INVOLVING x „0…

To evaluate the matrix element in Eqs.~4.15! and ~5.12!,
we assume thatx050 in Eq.~4.7!, i.e., the first nonmagnetic
medium is vacuum. Then the matrix element in Eq.~4.15!
can be evaluated from Eqs.~4.3! and ~4.10! as

k0
2^2k f

T ,nux(0)uEm
i ~r !&

5Ak0
2dkixkf x

dkiykf y(j
Tj n

(0)~2k f !

3(
ab

ej a* ~x1dab1xab
(2)!embE

2`

0

dze2 i [kf z
t ( j )2kiz]z,

5 iAk0
2dkixkf x

dkiykf y
3(

j

Tj n
(0)~2k f !

kf z
t ~ j !2kiz

3(
ab

ej a* ~x1dab1xab
(2)!emb . ~B1!
22440
c

.

c-

In order to evaluate the explicit expression for the abo
equation, let us now consider the case where the incide
angleu i is small andM i x̂, as discussed in Appendix A. In
this case,êj5ês6 i êp and kf z

t ( j )5k0u6 , where the upper
and lower signs correspond toj 51 and 2, respectively, and
kiz52k0u0. From Eqs. ~4.2!, ~A4!, and ~A7!, the
polarization-dependent terms are evaluated by

(
ab

ej a* ~x1dab1xab
(2)!emb

5x1~ êj* •êm!1~ êj* 3êm!xxM i x̂
(2)

55
x11 ix (2)5u1

2 2u0
2 for j 51,m5s

x12 ix (2)5u2
2 2u0

2 for j 52,m5s

2 ix11x (2)52 i ~u1
2 2u0

2! for j 51,m5p

ix11x (2)5 i ~u2
2 2u0

2! for j 52,m5p,

~B2!

whereu05u i whenx050 in Eq.~A10!. The explicit form of
232 matrix Tj n

(0)(2k f) can be obtained fromMn→r
tt in Eq.

~A16! by replacingi by (2 i ). Then, the matrix element in
Eq. ~4.15! can be expressed by a 232 matrix in terms of the
polarizations of incident and outgoing beams,m and n, as
follows:

k0
2^2k f

T ,nux(0)uEm
i ~r !&

5 iAk0
2dkixkf x

dkiykf y

2u0

k0~u11u0!~u21u0!

3S u1u22u0
2 2 iu0~u12u2!

iu0~u12u2! u1u22u0
2 D ,

52iAkizRnm
(0)~k i !dkixkf x

dkiykf y
, ~B3!

whereRnm
(0)(k i) corresponds toMn→r

rt in Eq. ~A16!. Without
loss of generality, the final result in Eq.~B3! is applicable for
the case withx0Þ0, although the calculation forz.0
should be included in Eqs.~B1!–~B3!.

For the transmission coefficient, the matrix element in E
~5.12! for x050 can be also evaluated from Eqs.~5.10! and
~5.11! as

k0
2^2k f

T , j ux(0)uk i ,m&

5Ak0
2dkixkf x

dkiykf y(n
Tn j

(0)~2k f !(
j 8

Tj 8m
(0)

~k i !

3(
ab

ena* ~x1dab1xab
(2)!ej 8bE

2`

0

dze2 i [ 2kf z2kiz
t ( j 8)]z,

5 iAk0
2dkixkf x

dkiykf y (
n, j 8

Tn j
(0)~2k f !Tj 8m

(0)
~k i !

2kf z2kiz
t ~ j 8!

3(
ab

ena* ~x1dab1xab
(2)!ej 8b , ~B4!
9-15
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where the vector fieldE(k i ,m) in Eq. ~5.10! has been used
for the stateuk i ,m& instead of the ‘‘pure’’ incoming wave
Em

i (r ) in Eq. ~4.3!. Similarly to the reflection coefficient in
Eqs. ~B1!–~B3!, the matrix element in Eq.~5.12! can be
expressed by a 232 matrix in terms of the polarizations o
incident and transmitted beams,m and j, as follows:

k0
2^2k f

T , j ux(0)uk i ,m&

5 iAk0
2dkixkf x

dkiykf y

4

k0S u1

u0

u11u0
u1

2 iu0

u11u0

u2

u0

u21u0
u2

iu0

u21u0

D ,

54iAkiz
t ~ j !dkixkf x

dkiykf yS u0

u11u0

2 iu0

u11u0

u0

u21u0

iu0

u21u0

D ,
22440
54iAkiz
t ~ j !Tj m

(0)~k i !dkixkf x
dkiykf y

, ~B5!

where Tj m
(0)(k i) corresponds toMn→r

tt in Eq. ~A16!. Again,
the final result in Eq.~B5! is applicable for the case with
x0Þ0 without loss of generality.

APPENDIX C: EXPLICIT EXPRESSIONS FOR ROUGH-
INTERFACE M̃ pq MATRICES

For the interface between upper nonmagnetic (xab
5x0dab) and lower resonant magnetic (xab5x1dab

1xab
(2)) layers, the explicit expressions of the rough-interfa

M̃n→r
pq matrices can be given by

M̃n→r
rt 5Rn→r5~ I2Vn→r !

21~Rn→r
(0) 1Un→r !,

M̃n→r
tt 5Tn→r5~ I2Vn→r8 !21Tn→r

(0) , ~C1!

where, from Eqs.~5.6! and ~5.19!,
Rn→r
(0) 1Un→r52

1

2 S D1
(1)1D2

(1)

~u11u0!2
1

D3
(1)2D4

(1)

~u21u0!2
2 i S D1

(1)1D2
(1)

~u11u0!2
2

D3
(1)2D4

(1)

~u21u0!2 D
i S D1

(1)1D2
(1)

~u11u0!2
2

D3
(1)2D4

(1)

~u21u0!2 D D1
(1)1D2

(1)

~u11u0!2
1

D3
(1)2D4

(1)

~u21u0!2

D ,

I2Vn→r5
1

2 S D1
(2)1D2

(2)

u1
2 2u0

2
1

D3
(2)2D4

(2)

u2
2 2u0

2
2 i S D1

(2)1D2
(2)

u1
2 2u0

2
2

D3
(2)2D4

(2)

u2
2 2u0

2 D
i S D1

(2)1D2
(2)

u1
2 2u0

2
2

D3
(2)2D4

(2)

u2
2 2u0

2 D D1
(2)1D2

(2)

u1
2 1u0

2
1

D3
(2)2D4

(2)

u2
2 2u0

2

D ,

I2V8n→r5S D1
(2)1D2

(2)

u1
2 2u0

2
0

0
D3

(2)2D4
(2)

u2
2 2u0

2

D , Tn→r
(0) 5Mn→r

tt 5S u0

u11u0
2 i

u0

u11u0

u0

u21u0
i

u0

u21u0

D , ~C2!
and

D1
(6)5~x12x0!e2(k0

2/2)(u16u0)2sc
2
,

D2
(6)5B8e2(k0

2/2)(u16u0)2sm
2
,

D3
(6)5~x12x0!e2(k0

2/2)(u26u0)2sc
2
,

D4
(6)5B8e2(k0

2/2)(u26u0)2sm
2
. ~C3!

Here, (x12x0)5(u1
2 1u2

2 )/22u0
2 andB85(u1

2 2u2
2 )/2 can

be used fromu05Au i
21x0 andu65Au i

21x16B8.
For the reversed interface between upper magnetic~reso-

nant! and lower nonmagnetic layers,M̃ r→n
pq matrices can be

also given by

M̃ r→n
rt 5Rr→n5~ I2Vr→n!21~Rr→n

(0) 1Ur→n!,

M̃ r→n
tt 5Tr→n5~ I2Vr→n8 !21Tr→n

(0) , ~C4!

where
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Rr→n
(0) 1Ur→n5S D1

(1)1D2
(1)

~u11u0!2
0

0
D3

(1)2D4
(1)

~u21u0!2

D ,

I2Vr→n5I2V8n→r , I2V8r→n5I2Vn→r ,

Tr→n
(0) 5Mr→n

tt 5S 2u1

u11u0

2u2

u21u0

i
2u1

u11u0
2 i

2u2

u21u0

D . ~C5!

In the same way as Eq.~A18!, other M̃ pq matrices can be
given by

M̃n→r
tr 5M̃ r→n

rt , M̃n→r
rr 5M̃ r→n

tt ,

M̃ r→n
tr 5M̃n→r

rt , M̃ r→n
rr 5M̃n→r

tt . ~C6!

Finally, for the magnetic-magnetic~resonant-resonant! in-
terface between upper resonant magnetic (xab

up 5x1
updab

1xab
(2),up) and lower resonant magnetic (xab

dw5x1
dwdab

1xab
(2),dw) layers,M̃ r→n

pq matrices can be also given by

M̃ r→r
rt 5Rr→r5~ I2Vr→r !

21~Rr→r
(0) 1Ur→r !,

M̃ r→r
tt 5Tr→r5~ I2Vr→r8 !21Tr→r

(0) , ~C7!

where

Rr→r
(0) 1Ur→r52S D5

(1)1D6
(1)

~u1
dw1u1

up!2
0

0
D7

(1)2D8
(1)

~u2
dw1u2

up!2

D ,

I2Vr→r5S D5
(2)1D6

(2)

~u1
dw!22~u1

up!2
0

0
D7

(2)2D8
(2)

~u2
dw!22~u2

up!2

D , ~C8!

and

D5
(6)5~x1

dw2x1
up!e2(k0

2/2)(u1
dw

6u1
up)2sc

2
,

D6
(6)5~Bdw8 2Bup8 !e2(k0

2/2)(u1
dw

6u1
up)2sm

2
,

D7
(6)5~x1

dw2x1
up!e2(k0

2/2)(u2
dw

6u2
up)2sc

2
,

D8
(6)5~Bdw8 2Bup8 !e2(k0

2/2)(u2
dw

6u2
up)2sm

2
, ~C9!

and (I2Vr→r8 ) corresponds to (I2Vr→r) when switching
the upper and lower layers, andTr→r

(0) corresponds toMr→r
tt

in Eq. ~A19!. Here, (x1
dw2x1

up)5@(u1
dw)21(u2

dw)2#/2
22440
2@(u1
up)21(u2

up)2#/2 and (Bdw8 2Bup8 )5@(u1
dw)22(u2

dw)2#/2
2@(u1

up)22(u2
up)2#/2 can be used from u6

up,dw

5Au i
21x1

up,dw6Bup,dw8 . In the same way as Eq.~C6!, two

other matricesM̃ r→r
tr and M̃ r→r

rr can be also obtained from

M̃ r→r
rt and M̃ r→r

tt in Eq. ~C7!, respectively, by switching the
upper and lower layers. We should mention again that th
rough-interfaceM̃ pq matrices for the magnetic-magnet
~resonant-resonant! interfaces can be reduced to the cases
the nonmagnetic-nonmagnetic~nonresonant-nonresonant! in-
terfaces by settingBup,dw8 to be zero.

APPENDIX D: SOLUTIONS OF SELF-CONSISTENT
MATRIX EQUATIONS FOR NONMAGNETIC

INTERFACES

For nonmagnetic interfaces (uM u50) ands→s polariza-
tion, simply

u15u25Au i
21x15ukz

t u/k0 . ~D1!

Inserting this in Eq.~A16! modified for (2k f) and using
x12x05(ukz

t u22ukzu2)/k0
2 , the self-consistent solution fo

the reflection coefficient (k f5k i
r andu i5u f) in Eq. ~5.6! can

be reduced to a scalar as

R5~12V!21~R(0)1U !, ~D2!

where

U5
ukzu2ukz

t u

ukzu1ukz
t u

~e2(1/2)(ukzu1ukz
t u)2sc

2
21!, ~D3!

R(0)5
ukzu2ukz

t u

ukzu1ukz
t u

,

V512e2(1/2)(ukzu2ukz
t u)2sc

2
,

andkf z
t 5ukz

t u, andkiz52kiz
r 52ukzu. Then, we obtain

R5
ukzu2ukz

t u

ukzu1ukz
t u

e2(1/2)(ukzu1ukz
t u)2sc

2
e1(1/2)(ukzu2ukz

t u)2sc
2

5R(0)e22ukzuukz
t usc

2
, ~D4!

which is consistent with the Nevot-Croce form.24

Similarly, the self-consistent solution for the transmissi
coefficient in Eq.~5.19! can be reduced into a scalar as

T(ss)5 (
j 51,2

Tj s5 (
j 51,2

~12V8!21Tj s
(0) , ~D5!

where

V8512e2(1/2)(ukzu2ukz
t u)2sc

2
,

T1s
(0)5T2s

(0)5
ukzu

ukzu1ukz
t u

. ~D6!
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Then,

T5
2ukzu

ukzu1ukz
t u

e(1/2)(ukzu2ukz
t u)2sc

2
5T(0)e(1/2)(ukzu2ukz

t u)2sc
2
,

~D7!

which is consistent with the Vidal-Vincent form.26

APPENDIX E: RECURSIVE 2 Ã2 MATRIX FORMULAS
FOR MULTIPLE INTERFACES

For multiple interfaces, additional phase differences
tween different interfaces should be taken into accoun
extend the results for a single interface in Appendix A. F
lowing Ref. 18,Mn11

pq matrices for thenth interface between
nth and (n11)th layers can be modified from Eq.~A15! as

Mn11
tt 5MttFn

21 , Mn11
tr 5Mtr ,

Mn11
rt 5Fn

21MrtFn
21 , Mn11

rr 5Fn
21Mrr , ~E1!

where M pq are the 232 matrices obtained for a singl
smooth interface in Appendix A, depending on whether
upper and lower layers on thenth interface are nonmagneti
or magnetic ones, respectively,

Fn5S e2 ik0u1,ndn 0

0 e2 ik0u2,ndn
D , ~E2!

andu6,n anddn represent the refracted angle defined in E
~A7! and the thickness of thenth ~upper! layer, respectively.
For nonmagnetic layers,u6,n reduces tou0,n in Eq. ~A10!.
Rn andTn are the vectors (Rn,1 ,Rn,2) and (Tn,1 ,Tn,2) repre-
senting the two waves reflected and transmitted, respectiv
at the top of thenth layer.~In Ref. 18, they are defined at th
bottom of thenth layer.!

Introducing Wn
pq matrices following Ref. 18, which are

defined by
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