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Quantum spin nematic phase in a square- 
lattice iridate

Hoon Kim1,2,9, Jin-Kwang Kim1,2,9, Junyoung Kwon2, Jimin Kim1,2, Hyun-Woo J. Kim1,2, 
Seunghyeok Ha1,2, Kwangrae Kim1,2, Wonjun Lee1,2, Jonghwan Kim3,4, Gil Young Cho1,2, 
Hyeokjun Heo5, Joonho Jang5, C. J. Sahle6, A. Longo6,7, J. Strempfer8, G. Fabbris8, Y. Choi8, 
D. Haskel8, Jungho Kim8, J. -W. Kim8 & B. J. Kim1,2 ✉

Spin nematic is a magnetic analogue of classical liquid crystals, a fourth state of 
matter exhibiting characteristics of both liquid and solid1,2. Particularly intriguing  
is a valence-bond spin nematic3–5, in which spins are quantum entangled to form a 
multipolar order without breaking time-reversal symmetry, but its unambiguous 
experimental realization remains elusive. Here we establish a spin nematic phase  
in the square-lattice iridate Sr2IrO4, which approximately realizes a pseudospin 
one-half Heisenberg antiferromagnet in the strong spin–orbit coupling limit6–9.  
Upon cooling, the transition into the spin nematic phase at TC ≈ 263 K is marked by  
a divergence in the static spin quadrupole susceptibility extracted from our Raman 
spectra and concomitant emergence of a collective mode associated with the 
spontaneous breaking of rotational symmetries. The quadrupolar order persists  
in the antiferromagnetic phase below TN ≈ 230 K and becomes directly observable 
through its interference with the antiferromagnetic order in resonant X-ray 
diffraction, which allows us to uniquely determine its spatial structure. Further,  
we find using resonant inelastic X-ray scattering a complete breakdown of coherent 
magnon excitations at short-wavelength scales, suggesting a many-body quantum 
entanglement in the antiferromagnetic state10,11. Taken together, our results  
reveal a quantum order underlying the Néel antiferromagnet that is widely  
believed to be intimately connected to the mechanism of high-temperature 
superconductivity12,13.

With its relevance to high-temperature superconductivity in cuprates, 
the spin one-half (S = 1/2) Heisenberg model on a square lattice has been a 
subject of extensive research over the last several decades9,13,14. Although 
the Mermin–Wagner theorem states that continuous symmetries can-
not be spontaneously broken in two dimensions, it is well established 
that Néel-type antiferromagnetic orders develop at low temperatures 
because of weak interlayer couplings that form a three-dimensional 
network in quasi-two-dimensional materials15. Nevertheless, spins retain 
much of their properties in the disordered phase and undergo large 
quantum zero-point motions16. The resulting ground-state wave func-
tion is believed to embody a highly non-trivial structure akin to those 
in quantum spin liquids. For instance, the resonant valence bond, a 
superposition of states in which spins pair up to form singlet ‘valence 
bonds’, may have substantial overlap with the ground state12 (Fig. 1). 
Upon carrier doping, these singlets evolve into Cooper pairs in a promi-
nent theory of high-temperature superconductivity12,13.

What is not well known, however, is the fact that such quantum entan-
glement between a pair of nearest-neighbour spins can also manifest as 
an ordered spin quadrupole moment when spins are canted3–5 (Fig. 1). 

Because quadrupole moment can be non-zero only for S ≥ 1, the exis-
tence of a quadrupolar order in an S = 1/2 system necessarily implies 
that spin pairs are entangled and have S = 1 triplet components. Unlike 
singlets, however, a quadrupolar order is, in principle, measurable17,18 
as it leads to spontaneous breaking of rotation symmetries19,20. In this 
article, we show that a quadrupolar order coexists with the Néel anti-
ferromagnetic order in Sr2IrO4, a single-layer (n = 1) member of the 
Ruddlesden–Popper series iridates (Fig. 2a), which has received much 
attention because of similarities with superconducting cuprates in 
their phenomenology6–9. Furthermore, we show that it persists above 
TN and realizes a spin nematic phase.

Resonant X-ray diffraction
We use resonant X-ray diffraction (RXD) to show the coexistence of a 
quadrupolar and dipolar (canted antiferromagnetic) order (Fig. 2a). The 
dipole–quadrupole interference contribution to the RXD intensity can 
be isolated by measuring the circular dichroic signal (ICD) of a magnetic 
Bragg reflection defined as
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where IL(R)L(R) denotes the intensity of left (right) circular polarized inci-
dent X-ray scattered into the left (right) circular outgoing X-ray. This 
definition of ICD reflects the fact that the scattered X-ray polarization 
is not resolved in our experiment. It is straightforward to show that 
the difference spectrum (IDIFF) in our particular case can be expressed 
as (Supplementary Note 1)
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where F Q
1,2 and F M

1,2 couple to symmetric (e1
S) and antisymmetric (e2

A) 
components of the polarization tensor e � �≡ ′*αβ α β , respectively, and 
represent the complex structure factor (F ≡ F1 + iF2) associated  
with time-reversal-even quadrupoles and time-reversal-odd dipoles, 
respectively. Thus, circular dichroism arises from the interference 
between dipolar and quadrupolar scatterings in the electric–dipole– 
electric–dipole (E1–E1) process of RXD. In Supplementary Note 2, we 
argue that this is the unique explanation for the circular dichroic in 
our case among all known mechanisms.

Figure 2b,c shows the representative resonance profile of the (0 0 21) 
reflection, arising from the net ferromagnetic moment owing to canting 
of the spins7, at two different azimuth angles (Ψ) defined as the angle 
between the crystallographic a axis and the vertical scattering plane. 
IDIFF is non-zero at and close to the resonance and positive (negative) at 
Ψ = 30° (Ψ = −56°). Figure 2d,e shows the sum spectra (ISUM) and IDIFF at 
the resonance for the full range of Ψ measured. The Ψ dependence of 
ICD (Fig. 2f) allows us to determine the spatial structure and symmetry 
of the quadrupolar order. To systematically find all symmetry-allowed 
q = 0 bond-centred quadrupole structures (Supplementary Note 3), 
we first note that the reflection appearing at (0 0 21) implies that both 
the dipolar and quadrupolar orders break the body-centre translation 
symmetry. Such structures are represented by one of the four irreduc-
ible representations Γ1, Γ2, Γ3 and Γ4, which are all two dimensional. 
For example, it is known that the magnetic structure shown in Fig. 2a 
belongs to Γ1 irreducible representation21.

Although there are many different possible quadrupole structures 
(Supplementary Note 3), there are only a few that have non-zero struc-
ture factors, which involve yz/zx quadrupoles for Γ1 and Γ2, xy for Γ3 and 
x2 − y2/3z2 − r2 for Γ4. In Fig. 2f, the Ψ dependence of ICD is simulated for 
each of these structures and compared with the data. We find that only 
the Γ1 structure, depicted in Fig. 2a, is consistent with the experimental 
data, the key feature of which is the sign change at Ψ = 0°. The total 
scattering amplitude is given by
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where M = (Mx, My) and Q = (Qyz, Qzx) are two-dimensional real basis 
vectors (whose transformation matrices are listed in Supplementary 
Note 3) for Γ1 representing the net ferromagnetic component of the 
magnetic order and the quadrupolar order, respectively, normalized to 
one when they have the maximal values and c = 4(1 − i) is a constant aris-
ing from the structure factor. r is a dimensionless factor accounting for 
the fact that quadrupoles only become visible by high-order RXD pro-
cesses (Supplementary Note 4 has possible microscopic mechanisms).

For the magnetic order, it is known that the easy axis is along <100> 
(ref. 22), and the fact that ISUM has a minimum at Ψ = 0° means that the 
magnetic domain being measured has the ferromagnetic (antiferro-
magnetic) component along the b (a) axis; hence, Mx = 0. As we shall 
see below, fixing the direction of M along y constrains Qyz to be zero. 
Thus, it follows that

I
rQ M α
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where α is the incidence angle to the sample surface (approximately 
27°). Thus, the data can be fit with rQzx/My as the only fitting parameter, 
and the best fit is obtained when rQzx/My ≈ 0.04 (Fig. 2f). With a quanti-
tative estimate of the r factor, which is beyond the scope of this work, 
one can in principle compare the relative magnitudes of Qzx and My.

Two-site S = 1/2 model
When a quadrupolar order coexists with a dipolar order, its allowed 
structure is constrained by the orientation of the dipolar order. For 
example, for a single S = 1 spin, it is easy to show that if its dipole moment 
is along z, then yz and zx quadrupole moments are zero. For the present 
case, we proceed with a simple two-site S = 1/2 model (Supplementary 
Note 5). An arbitrary wave function for a pair of nearest-neighbour spins 
can be expressed in the singlet–triplet basis (s, Tx, Ty, Tz) in terms of two 
parameters θ and ϕ as u + iv, where

θ φ φ φ φ φ

θ φ φ φ φ φ

= cos (cos cos , − sin , 0, cos sin ),

= sin (sin cos , cos , 0, sin sin ),
(5)c c

c c

u

v

under the constraints that the antiferromagnetic (ferromagnetic) 
component of the ordered moment is along a(b) axis and the canting 
angle ϕc ≈ 12° (that is, ⟨Ny⟩ = ⟨Nz⟩ = ⟨Mx⟩ = ⟨Mz⟩ = 0 and ⟨My⟩/〈Nx⟩ =  φtan c, 
where Nα ≡ S S−α α

1 2 and Mα ≡ S S+α α
1 2).

Table 1 compares the magnitudes of magnetic and non-magnetic 
orders calculated as functions of θ and ϕ. First, we find that ⟨Qxy⟩ =  
⟨Qyz⟩ = 0 for all values of θ and ϕ, but ⟨Qzx⟩ can be non-zero only  
when ϕc is non-zero. This suggests that the Dzyloshinskii–Moriya  
interaction plays an important role in stabilizing the quadrupolar  
order because the spin canting arises from the same origin8. Second, 
it is clear that θ parameterizes the competition between the magnetic 

Classical AF RVB Quantum AF Canted AF + Quadrupoles

Fig. 1 | Spin one-half moments on a square lattice. In strict two dimensions, 
antiferromagnetic order is not allowed at any finite temperature, and spins are 
disordered but quantum entangled in a non-trivial way. For example, resonant 
valence bond (RVB) is a state in which spins pair up to form singlets and 
fluctuate among numerous different configurations covering the square 

lattice with such dimers. Although most quasi-two-dimensional materials 
develop antiferromagnetic orders because of weak interlayer couplings, spins 
still undergo strong quantum fluctuations. In a canted antiferromagnetic, 
quantum entanglement can manifest as an ordered spin quadrupole moment. 
AF, antiferromagnetic.
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and non-magnetic sectors. For example, at θ = π
4

, the magnetic moment 
fully saturates and ⟨Qzx⟩ = 0. Third, in the non-magnetic sector, ϕ con-
trols the magnitude of ⟨Qzx⟩, which anti-correlates with that of the dimer 
correlation �− ⋅ − �1 2 1

4S S , which takes the values 1
2

, 0 and − 1
2  for the 

singlet, Néel antiferromagnetic state and triplets, respectively. In other 
words, just as the net ferromagnetic moment has its origin in the cant-
ing of antiferromagnetic spins, ⟨Qzx⟩ arises from the underlying singlet 
correlation by ‘canting’ in angle ϕ.

Raman spectroscopy
Next, we use Raman spectroscopy, which has been suggested as a sensi-
tive probe for spin nematic, to show that the quadrupolar order persists 
above TN, armed with the information that the order should appear in 
the YZ or ZX polarization channel, which corresponds to the Eg sym-
metry channel of the tetragonal D4h point group. This requires the laser 
beam to be incident on the side surface of a thin plate-like crystal, and 

thus, it has not been measured in previous Raman studies on Sr2IrO4 
(refs. 23–25). Figure 3a shows the Raman spectra measured in ZX scat-
tering geometry. Upon cooling down from T = 325 K, we observe a broad 
quasielastic feature developing with its tail extending up to less than or 
approximately 10 meV, which is indicative of slow fluctuations of spins 
(Fig. 3a). Integrating the Raman conductivity χ″/ω over a sufficiently 
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Fig. 2 | Dipole–quadrupole interference in circular dichroic RXD.  
a, A schematic for the Néel and spin nematic orders overlaid on the crystal 
structure of Sr2IrO4 having the tetragonal I41/acd space group. The magnetic 
and quadrupole moments mutually constrain their orientations below the Néel 
temperature TN (right panel), whereas (Qz x, Q yz) transforms as an Eg doublet 
above TN (left panel). b,c, Resonance profile of the circular dichroic signal at 
(0 0 21) magnetic reflection measured at Ψ = 30° (b) and Ψ = −56° (c). IRC (red) 

and ILC (blue) denote the diffraction intensity for right- and left-circularly 
polarized incident X-rays, respectively. d,e, ISUM ≡ IRC + ILC (d) and IDIFF ≡ IRC − ILC (e) 
at the resonance for the full range of Ψ measured. S1 and S2 are obtained from 
two independent measurements. f, Comparison of ICD ≡ IDIFF/ISUM with the 
simulations for different irreducible representations. The best fit to the data 
using the Γ1 profile is shown in d–f, and its structure is shown in a. Error bars 
represent one standard deviation. a.u., arbitrary unit; CD, circular dichroic.

Table 1 | Quadrupole and dipole moments from the two-site 
S = 1/2 model calculation

Type Order Expression

Antiferromagnetic ⟨Nx⟩ θsin2 cos cφ

Ferromagnetic ⟨My⟩ φθsin2 sin c

Quadrupole ⟨Qzx⟩ φ φθ(cos2 sin2 sin )1
2 c

Singlet SS SS1 2 1
4�− ⋅ − � θ(cos2 cos2 cos sin )1

2
2

c
2

cφ φ φ−
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large energy window (0.85–23.4 meV), we obtain in Fig. 3b the real part 
of the static susceptibility, which follows the Curie–Weiss temperature 
dependence with TC ≈ 263 K.

Concomitantly, an A1g mode emerges (Fig. 3c and Extended Data 
Fig. 1), which is barely visible above our instrumental low-energy cutoff 
of approximately 0.85 meV at TC but upon further cooling, becomes well 
resolved as the peak moves to higher energies. We interpret this peak as 
the phase mode associated with the quadrupolar order, analogous to 
spin-wave modes in the antiferromagnetic phase. The order parameter 
has Eg symmetry, which can be continuously rotated about the c axis. 
This allows the phase mode to have the energy (1–2 meV), an order of 
magnitude smaller than the temperature scale of TC (approximately 
20 meV), in accordance with the Goldstone theorem. Together with the 
divergence in the static susceptibility, this collective excitation consti-
tutes direct evidence of a thermodynamic phase transition at TC ≈ 263 K, 
well above the antiferromagnetic transition temperature TN ≈ 230 K.

The A1g mode persists as the sample is cooled down through TN 
(Fig. 3c,d), at which temperature the B2g single-magnon mode emerges 
(Fig. 3e). The A1g mode becomes gapped close to TN as the antiferromag-
netic order further reinforces the breaking of the rotational symmetry 
(Fig. 3f). The intensity of the A1g mode continues to grow in the antifer-
romagnetic phase (Fig. 3d), implying the coexistence of dipolar and 
quadrupolar orders. As the antiferromagnetic order sets in, however, 
the stacking pattern of the quadrupoles changes, which is governed by 
weak interlayer interactions of less than or approximately 10 μeV energy 
scales, four orders of magnitudes smaller than those for intralayer 
interactions22 (Fig. 2a). We note that the A1g mode is almost insensitive 
to the onset of the dipolar order, indicating that spins entanglement 
remains intact below TN.

Resonant inelastic X-ray scattering
If the quadrupolar order comprises a substantial part of the ground 
state (small θ limit in equation (5)), excitation spectra must exhibit a 

qualitative departure from the classical spin-wave theory, which largely 
reproduces the experimental spectra of cuprate square-lattice antifer-
romagnets26. Figure 4 shows the resonant inelastic X-ray scattering 
(RIXS) spectra for the spin components transverse and longitudinal 
to the ordered moment direction, which we resolve by measuring the 
spectra for two different magnetic moment directions aligned using a 
small permanent magnet (Extended Data Table 1 and Supplementary 
Note 6). At the ordering wave vector (π, π) (Fig. 4b), the spectral weight 
is mostly in the transverse channel, consistent with the spin-wave theory 
description, which expects a divergent intensity for a gapless Goldstone 
mode. The transverse magnon mode is also clearly visible at (π/2, π/2), 
although a considerable weight is transferred to the longitudinal chan-
nel (Fig. 4c). By contrast, at (π, 0) the spectrum is completely isotropic 
and shows no sharp feature that can be identified as a magnon mode 
(Fig. 4d). We note that the zone-boundary RIXS spectra are hardly 
affected by the small magnetic field (Supplementary Note 6).

In the cuprates, the ‘(π, 0) anomaly’ is ubiquitously observed across 
many different materials10,27–30, and from its isotropic nature, the con-
tinuum has been interpreted as deconfined fractional quasiparticles 
(spinons)10,11. We note, however, that the transverse mode still consti-
tutes the dominant part of the total intensity in most cases. To the best 
of our knowledge, the complete loss of the coherent magnon intensity 
is unprecedented and renders alternative multimagnon scenarios31 
unlikely in our case.

Discussion
Theoretically, spin nematics are predicted to arise in certain spin 
models with competing interactions1,32–37. For example, in a square 
lattice, four-spin exchange (Jc) competing with ferromagnetic nearest- 
neighbour Heisenberg exchange (J) can lead to a spin nematic2,4,5.  
In this regard, 5d transition-metal oxides, classified as ‘weak’ Mott 
insulators stabilized by strong spin-orbit coupling, may be a promising 
ground to search for a spin nematic because the large spatial extent 
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of the 5d orbitals can bring about strong competing interactions with 
nearest-neighbour Heisenberg interactions9. Indeed, the presence of 
interaction terms beyond nearest neighbour in Sr2IrO4 is clear from its 
steep spin-wave dispersion along the magnetic zone boundary38, which 
can be equally well fitted with a model including Jc or further-neighbour 
couplings (J2 and J3). Further, our study suggests that the large canting 
angle of the spins resulting in a sizable net ferromagnetic moment in 
each layer may be favourable for stabilizing the spin nematic phase 
even in an Néel antiferromagnet.

The fact that L edges of 5d transition-metal elements are in the hard 
X-ray regime with access to a wide region in the momentum space is 
also advantageous for direct detection of spin quadrupoles, as X-rays 
become sensitive to quadrupoles under resonance conditions17,18. 
Most other experimental probes are insensitive to spin quadrupoles, 
and evidence for a spin nematic has so far been indirectly provided 
from thermodynamic19,39 and nuclear magnetic resonance measure-
ments20. In Sr2IrO4, evidence for a symmetry-breaking order above 
TN has been found in studies using second harmonic generation40, 
polarized neutron scattering41 and magnetic torque measurements42. 
These studies suggest loop currents as the possible order. Although 
our result is inconsistent with such a time-reversal symmetry-breaking 
order (Extended Data Fig. 2), it is possible that these experiments are 
probing yet another order of different nature (Extended Data Table 2).

Our results vividly demonstrate that multiple orders are intertwined 
even in the Mott insulating phase. The discovery of the spin nematic 
phase is not only important on its own, but it also paves a new pathway 
to investigate the entanglement structure of quantum spins through 
resonant X-ray scattering processes18. The quantum entanglement 

between nearest-neighbour spins manifests as a spin quadrupolar 
order and possibly accounts for the complete loss of coherent magnons 
at momentum (π, 0). If quadrupolar orders can be detected through 
charge–quadrupole interference, their temperature and doping evo-
lution can be followed in the absence of a magnetic order, with the 
ultimate goal of elucidating the role of magnetic correlations in myriad 
exotic phases displayed by doped Mott insulators.
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magnets that apply a magnetic field of 0.3 T along the b axis (a axis) at the sample 
position aligning the magnetic domains (that is, M∥ ̂b (M∥ ̂a)). The direction  
of the applied field can be changed by rotating the outer disk on which the 
magnets are mounted while the sample stays fixed. The angle between the 
incident and outgoing X-rays is fixed close to 90° to suppress elastic Thomson 

scattering. b–d, RIXS spectra for (π, π) (b), (π/2, π/2) (c) and (π, 0) (d). The 
transverse (T) mode and the longitudinal (L) mode are displayed along with  
the sum of the two (T + L). Solid lines are guides to the eye. The components are 
extracted from the raw spectra measured in different magnetic field directions 
with a fixed scattering geometry (Extended Data Table 1 and Supplementary 
Note 6). The spectra measured at intermediate wavevectors between (π/2, π/2) 
and (π, 0) are displayed in Extended Data Fig. 3. Error bars are determined using 
error propagation of the intensity uncertainties in the raw spectra.
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Methods

Crystal growth
Single crystals of Sr2IrO4 were grown by the standard flux growth 
method. Powders of IrO2, SrCO3 and SrCl 2⋅6H2O were mixed and placed 
in an iridium crucible covered with a lid. The mixture was melted and 
soaked at T = 1,300 °C, slowly cooled down to 900 °C at 8 °C per 1 h and 
then, furnace cooled to room temperature. We note that our crystals 
grown in an iridium crucible have the lattice structure of space group 
I41/acd (ref. 43) and show no sign of the glide symmetry-breaking dis-
tortions previously reported44.

RXD
RXD experiments were carried out at the 1C beamline of Pohang Accel-
erator Laboratory and the 4-ID-D beamline of the Advanced Photon 
Source. Incident X-ray was tuned at the Ir L3 edge (11.217 keV). The 
focused beam having spatial resolution better than approximately 
100 μm was used. The sample was mounted on the cold finger of a 
closed-cycle cryostat, and temperature was kept at 10 K throughout the 
experiment. The left and right circular polarized X-ray was generated 
using a diamond phase retarder. The helicity was switched at every 
data point to measure the flipping ratio of the circular dichroic signal.

RIXS
RIXS spectra were measured at the 27-ID-B beamline of the Advanced 
Photon Source and the ID20 beamline of the European Synchrotron 
Radiation Facility. Incident X-ray was tuned to the Ir L3 edge (11.215 keV). 
Using a diamond (1 1 1) high-heat load monochromator in combination 
with an Si (8 4 4) channel-cut monochromator reduced the energy 
bandpass down to 14.8 meV. The beam was then focused by a set of 
Kirkpatrick–Baez mirrors, producing a spot size of 40 × 10 (H × V) μm2 
full-width at half-maximum at the sample position. Scattered photons 
were analysed by an Si (8 4 4) diced spherical analyser with a radius 
of 2 m and with a mask of 2 inches in diameter for measurement at 
(π, π) and 3 inches for other momenta. The overall energy resolution 
was about 30 meV. A horizontal scattering geometry was used with 
the incident π polarization, and the outgoing polarization was not 
resolved. All RIXS spectra were taken around (3 0 28.5) in a normal 
incident scattering geometry, and a small magnetic field (approxi-
mately 0.3 T) was applied along either the a or b axis to align magnetic 
moments. The scattering angle (2θ) was kept around 90° to suppress 
elastic Thomson scatterings.

Raman spectroscopy
Raman spectroscopy was performed with a home-built setup equipped 
with a 633 nm He–Ne laser and a liquid nitrogen-cooled charge-coupled 
device (Princeton instruments). The elastic signal is removed by 
grating-based notch filters (Optigrate, BragGrate Notch filters). The 
spectra were acquired on as-grown surfaces of Sr2IrO4 crystals mounted 
in a closed-cycle optical cryostat (Montana instruments). The laser 
power and beam spot size are 0.8 mW and 2 μm, respectively, which 
resulted in an almost temperature-independent laser heating of 25 K 
as determined from the Stokes to anti-Stokes intensity ratio. All Raman 
spectra are Bose corrected.

Magneto-optical Kerr measurement
We performed magneto-optical Kerr measurements on Sr2IrO4 using 
an oblique-incidence zero-area Sagnac interferometer operating at 
1,550 nm wavelength to measure the in-plane magnetization45. The rela-
tive Kerr angle ΔθK is obtained by subtracting temperature-independent 
backgrounds, coming from the instrumentation offset, measured at 
T = 300 K and converted to magnetization (in μB per ion) by a quantita-
tive comparison of our 0.35 T Kerr data with the corresponding mag-
netization data in ref. 22. Throughout the measurements, the incident 
optical power was maintained below 1 mW so that the effect of optical 
heating was smaller than 1 K.

Data availability
All data are available in the manuscript or Supplementary Information.
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Extended Data Fig. 1 | Temperature evolution of the low-energy Raman 
modes. The Raman spectra of the A1g and B2g modes shown in Fig. 2c,e are 
displayed with vertical offset for clarity. The A1g (red) and B2g (black) spectra 

were measured on the same crystal under the same experimental conditions 
including laser power and acquisition time, and the spectra are plotted in the 
same arbitrary unit.
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Extended Data Fig. 2 | Magneto-optical Kerr measurement. a, Relative Kerr 
angle in the 0.35 T in-plane magnetic field (red line) and ambient magnetic  
field near 0 T (black line). The relative Kerr angle (left axis) is converted to 
magnetization (right axis) using a conversion factor of 7.7 × 10−4 (μB/Ir ion)/(μ rad). 
b, Magnified plot of the 0 T data in a. Dashed line indicates the standard 

deviation for the T = 230 ~ 300 K range. The Kerr signal at B = 0 T in the range  
of 230 K < T < 300 K shows that no net magnetization is present within our 
experimental resolution, 3.4 × 10−5 μB/ion (dashed line), thus confirming the 
preservation of time-reversal symmetry above TN ~ 230 K.
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Extended Data Table 1 | Sensitive mode for each combination of specific scattering geometry and field direction in RIXS 
measurements on Sr2IrO4

Incident angle Field direction Moment direction Polarization Sensitive element Mode

Normal

[100] [010]
eπ × eπ [010] L

eπ × eσ [001] T

[010] [100]
eπ × eπ [010] T

eπ × eσ [001] T

Grazing

[100] [010]
eπ × eπ [010] L

eπ × eσ [100] T

[010] [100]
eπ × eπ [010] T

eπ × eσ [100] L

’

’ ’

’

’

’

’

’

’

’

Here, L stands for the longitudinal mode, T for the in-plane transverse mode, and T′ for the out-of-plane transverse mode. Please note that ‘Mode’ represents the most sensitive mode in a specific 
scattering geometry and a field direction.



Extended Data Table 2 | Comparison to previous reports of hidden order in Sr2IrO4

Observation Interpretation Inconsistency with our data

SHG

• Breaking of inversion and
rotational symmetries at
THO � 243 K in undoped
Sr2IrO 4, and at THO 210 K
for 4 % Rh-doped sample.

• Symmetry consistent with
magneto-electric loop cur-
rent.

• Reinterpreted as due to
surface magnetization in-
duced electric-dipole SHG
process based on additional
experiments in magnetic
field (for undoped sample).

• THO and TC di�erent by 20 K (for
undoped sample).

• Inconsistent with PND and TM (fer-
roic stacking along c-axis).

PND

• Spin-flip scattering at
Q = (1, 1, 2) setting in at
THO � 240 ± 30 K for both
parent and 7 % Rh-doped
samples.

• Symmetry consistent with
magneto-electric loop cur-
rent (but of di�erent type
from the one suggested by
SHG).

• Q vector di�erent from our x-ray
data; CD is observed at (0 0 odd).

• THO � 240 K is much lower than our
TC � 263 K.

• Our magneto-optical Kerr e�ect
data rules out any time-reversal break-
ing order.

TM
• Broken C4 symmetry at
THO � 270 K for the parent
compound.

• Nematic phase transition
(but distinct from nematic
orders reported in other
systems, which have even
parity).

• Consistent with our data.

• THO � TC

ER

• Absence of divergent
behavior in the nematic sus-
ceptibility, which suggests
odd parity.

• Together with the mag-
netic torque data, the hid-
den order is suggested to be
a loop current order.

• The data is available only for Rh-
doped samples.

�

�

The SN order discovered in our work is symmetry distinct from that of a loop current (LC) order, originally suggested to account for the pseudogap in cuprates46 and much discussed recently in 
Sr2IrO4 as a possible origin of the hidden order. Below, we have summarized the previous reports based on second harmonic generation (SHG)40,47, polarized neutron diffraction (PND)41, torque 
magnetometry (TM)42, and elastoresistance (ER)42 measurements, and compared them with our results.
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