We combine x-ray magnetic circular dichroism spectroscopy at Fe $L_{2,3}$ edges, at Eu $M_{4,5}$ edges, x-ray absorption spectroscopy (XAS) investigation of Eu valence, and local spin density calculations, to show that the filled skutterudite Eu$_{0.95}$Fe$_4$Sb$_{12}$ is a ferrimagnet in which the Fe 3d moment and the Eu$^{2+}$ 4f moment are magnetically ordered with dominant antiferromagnetic coupling. From Eu L_3 edge XAS, we find that about 13% of the Eu have a formal valence of 3+. We ascribe the origin of ferrimagnetism at a relatively high transition temperature T_C of 85 K in Eu$_{0.95}$Fe$_4$Sb$_{12}$ to f-electron interaction with the nearly ferromagnetic [Fe$_4$Sb$_{12}$]$_{12}^{2-}$ host lattice.

PACS numbers: 71.27.+a, 61.10.Ht, 75.30.Mb, 75.50.Bb

FIG. 1 (color online). (a) Magnetization vs field at 5 K in Eu$_{0.95}$Fe$_4$Sb$_{12}$. Inset shows χ^{-1} vs T. (b) Eu L_3 edge XAS with a fit described in the text.
scribed in Ref. [9] and were characterized by x-ray diffraction (XRD) and magnetization. The Eu site filling fraction \(y \) was estimated to be close to 0.95 from XRD intensity analysis. XAS measurements at the Eu \(L_{2,3} \) edges were performed at the Advanced Photon Source (APS) beam line 4-ID-D. The x-ray absorption coefficient, which is defined as \(\mu(E) = \frac{\mu^+ + \mu^-}{2} \), where \(\mu^+ \) and \(\mu^- \) are the x-ray absorption measured with positive and negative photon helicities, respectively, was measured at the Eu \(L_{2,3} \) edges in \(\text{Eu}_0.95\text{Fe}_4\text{Sb}_{12} \) and compared with that in the divalent europium reference compound \(\text{Eu}_2\text{Ga}_4\text{Ge}_{30} \). Figure 1 shows Eu \(L_3 \) XAS of \(\text{Eu}_{0.95}\text{Fe}_4\text{Sb}_{12} \). A strong peak from Eu\(^{2+}\) as in the XAS of \(\text{Eu}_2\text{Ga}_4\text{Ge}_{30} \), and a satellite peak from Eu\(^{3+}\) are observed. The relative contributions of Eu\(^{2+}\) and Eu\(^{3+}\) were determined by fitting Eu \(L_3 \) edge XAS measured at 4.8 K and 295 K using a two-component model [10] that yielded a temperature independent helicity, respectively, was measured at the Eu \(L_{2,3} \) edge. The x-ray absorption coefficient, which is measured at the Eu \(M_{4,5} \) edges in \(\text{Eu}_{0.95}\text{Fe}_4\text{Sb}_{12} \) and compared with that in the divalent europium reference compound \(\text{Eu}_2\text{Ga}_4\text{Ge}_{30} \). Figure 1 shows Eu \(L_3 \) XAS of \(\text{Eu}_{0.95}\text{Fe}_4\text{Sb}_{12} \). A strong peak from Eu\(^{2+}\) as in the XAS of \(\text{Eu}_2\text{Ga}_4\text{Ge}_{30} \), and a satellite peak from Eu\(^{3+}\) are observed. The relative contributions of Eu\(^{2+}\) and Eu\(^{3+}\) were determined by fitting Eu \(L_3 \) edge XAS measured at 4.8 K and 295 K using a two-component model [10] that yielded a temperature independent population of 87% for Eu\(^{2+}\) and 13% for Eu\(^{3+}\).

The XAS and XMCD measurements at the Eu \(M_{4,5} \) and Fe \(L_{2,3} \) edges were performed on beam line 4-ID-C using a hot pressed and highly polished pellet sample in an applied field of 2 Tesla. Figure 2 shows the XAS and XMCD at the Eu \(M_{4,5} \) edges in \(\text{Eu}_{0.95}\text{Fe}_4\text{Sb}_{12} \) measured at 4.9 K in an applied field of 2 Tesla. XMCD is defined as \(\Delta \mu(E) = (\mu^+ - \mu^-) \). The XAS at the \(M_5 \) edge shows at least four peaks that could be associated with the multiplet splittings of Eu\(^{2+}\) and Eu\(^{3+}\) ions. The positions of the multiplet peaks in \(M_{4,5} \) XAS compare quite well with the theoretical positions of Eu\(^{2+}\) and Eu\(^{3+}\) ions reported in the literature [11]. The \(M_4 \) edge XAS of \(\text{Eu}_{0.95}\text{Fe}_4\text{Sb}_{12} \) was fit using linear combination of the relative contributions of the theoretical XAS of Eu\(^{2+}\) and Eu\(^{3+}\). The best fit to the \(M_4 \) edge XAS, shown in Fig. 2(c), yielded 48 \(\pm \) 2% of Eu\(^{2+}\) and 52 \(\pm \) 2% of Eu\(^{3+}\) valence states. The contribution of Eu\(^{3+}\), estimated from the soft XAS measurement at the \(M_4 \) edge, is much larger than the 13% found in the hard XAS measurement at the \(L_3 \) edge. We attribute the discrepancy to the different fractions in the mixed valence at the surface, since the soft x-ray measurements only probe the top 5 nm of the sample while the \(L \)-edge measurements are a bulk probe. However, we can use the obtained values of Eu\(^{2+}\) and Eu\(^{3+}\) occupations to normalize our XMCD signal from Eu\(^{2+}\). A fit by Lorentzians to the XMCD spectrum [see Fig. 2(d)] shows that about 92% of the integrated XMCD intensity belongs to Eu\(^{3+}\) and the remaining 8% originates from a Van-Vleck type contribution from the low lying excited states of Eu\(^{3+}\). Because the XMCD measured at the Eu \(M_{4,5} \) edges, shown in Fig. 2(b), is associated with a 4\(f \) final state, it directly gives a measure of the magnetic polarization in the 4\(f \) shell of Eu ions. The hysteresis [inset in Fig. 2(b)] shows that the Eu moment is saturated at 2 Tesla. The sum rule analysis enables the estimation of spin and orbital magnetic moments of Eu from the measured intensities of XAS and XMCD [12]. We assumed that the magnetic dipole operator, \(\langle T_L \rangle = 0 \) which is reasonable as Eu has cubic symmetry and \(L = 0 \) for Eu\(^{2+}\). The sum rule analysis of the experimental Eu \(M_{4,5} \) edge XAS and the XMCD, shown in Fig. 2, the Eu\(^{2+}\) valence population of 48 \(\pm \) 2%, together with the assumptions of 7 unoccupied states in the 4\(f \) shell \((N_{4f} = 7) \) has yielded \(\mu_{\text{orb}} = 0.13 \pm 0.1 \mu_B \) and \(\mu_{\text{spin}} = 7.07 \pm 0.3 \mu_B \) per Eu\(^{2+}\) ion. The total moment of Eu\(^{2+}\) is therefore 7.2 \(\pm \) 0.3 \(\mu_B \).

Figure 3 shows the Fe \(L_{2,3} \) edge XAS and XMCD in \(\text{Eu}_{0.95}\text{Fe}_4\text{Sb}_{12} \) measured at 2.3 K in the ferromagnetic state, in a field of 2 Tesla. The spectra at 130 K above \(T_c \) did not show any appreciable signal indicating that the surface of the skutterudite sample was free of magnetic impurities during the measurements. Double peak or multiple peaks

FIG. 2 (color online). Eu \(M_{4,5} \) edge (a) XAS and (b) XMCD in \(\text{Eu}_{0.95}\text{Fe}_4\text{Sb}_{12} \) measured in a field of 2 Tesla at 4.8 K. (c) Theoretical fit to Eu \(M_4 \) XAS. (d) Lorentzian fit to the \(M_5 \) edge XMCD data. Inset in (b) shows the hysteresis of \(M_5 \) edge XMCD peak intensity at \(E = 1128 \) eV at 4.8 K.

FIG. 3 (color online). Fe \(L_{2,3} \) edge (a) XAS and (b) XMCD in \(\text{Eu}_{0.95}\text{Fe}_4\text{Sb}_{12} \) showing that Fe is magnetically ordered.
in the XAS can occur either from two different valent states of Fe or the energy-level splitting of the 3d state of Fe for a single valence state due to a crystal field or a combination of these. The presence of an XMCD shows that Fe has an ordered magnetic moment in this compound. The observed XMCD line shape consists of peaks at about 705.5 eV and 710 eV and minima at 707.5 and 709 eV in the L_3 edge region. Considering that Fe has a single site in this compound, we can estimate the magnetic moment per Fe from the XMCD spectrum. Using the magneto-optic sum rules for the $L_{2,3}$ edges of 3d group metals [12], the spin and orbital contributions to the 3d magnetic moment of Fe in Eu$_{0.95}$Fe$_4$Sb$_{12}$ are determined from the observed intensities of XAS and XMCD. Following a procedure similar to that used by Chen et al. [13], with the number of 3d holes N_{3d} = 3.4 found in XAS, and assuming that $\langle T_2 \rangle$ = 0, we get $-0.07 \pm 0.02 \mu_B$ and $-0.14 \pm 0.02 \mu_B$ for the orbital moment and the spin moment of Fe, respectively. The total Fe moment is then $-0.21 \pm 0.03 \mu_B$. The sign of the Fe moment indicates that it is antiferromagnetically coupled to the Eu moment, which was shown to have a positive sign in the analysis presented earlier. The Fe moment value is comparable to the value of $0.25 \mu_B$/Fe atom reported from dc magnetization measurements in AFe$_4$Sb$_{12}$ ($A = Na, K$) [14] and is consistent with a small hyperfine splitting observed in the 57Fe Mössbauer spectra in these compounds. The total magnetic moment due to Fe in the unit cell of Eu$_{0.95}$Fe$_4$Sb$_{12}$ is then $-0.84 \pm 0.12 \mu_B$. If we consider the antiferromagnetic alignment of the net moment of Fe with the $7.2 \pm 0.3 \mu_B$ per Eu$^{2+}$ ions, and that the Eu$^{2+}$ contribution of 87% obtained from the analysis of bulk sensitive Eu L_3 XAS, and the Eu site filling fraction of 0.95, then the total moment of Eu$_{0.95}$Fe$_4$Sb$_{12}$ comes out to be $5.1 \pm 0.3 \mu_B$ per formula unit. This is in excellent agreement with the net moment of $-5.1 \mu_B$/f.u. found in dc magnetization. While our results support the antiparallel alignment, we cannot fully rule out a canted structure or a more complex arrangement, due to the uncertainty in the magnitude of moments from our measurement.

The calculations were done within the local spin density approximation (LSDA) using the general potential LAPW method [15] and the crystal structure as determined experimentally at 100 K [5]. Converged results were obtained with a sampling of 48 points in the symmetry irreducible wedge of the zone. We employed basis sets of approximately 3100 basis functions including local orbitals [15], which were used to relax linearization errors and to include the upper semicore states. The core states were treated relativistically, while the valence states were treated in a scalar relativistic approximation. We find two magnetic states in fixed spin moment calculations, both with fully occupied majority spin Eu f bands and fully unoccupied minority spin f bands (i.e., Eu$^{2+}$). The lower energy state is the predicted ground state and is borderline half-metallic with a spin magnetization of $5.02 \mu_B$/f.u. consisting of $7 \mu_B$/Eu and $-0.5 \mu_B$/Fe. The other state, which is 0.128 eV/Eu higher in energy, has a spin magnetization of $8.26 \mu_B$/f.u. Both states have the same polarization inside the Eu atom centered spheres to within 0.01 μ_B, corresponding to $7 \mu_B$ from the Eu f and an induced polarization of 0.38 μ_B/f.u. (from 12 Sb atoms) mainly from Sb p derived states, which extend into the Eu atom centered sphere (radius 2.3 α_0). The magnitude of polarization in the Sb p states may, however, be exaggerated in the LSDA, similar to the case in Ce filled skutterudites [16]. In fact, we found no observable dichroism signal at the Sb $M_{4,5}$ edges in our XMCD experiments. We also performed self-consistent density functional calculations including spin-orbit interaction and found an average Fe orbital moment of $-0.06 \mu_B$ that is parallel to the Fe spin moment. The calculations with spin-orbit interaction yielded the same ground state with practically the same spin moments as the scalar relativistic calculations. Thus the magnetism should be described as arising from an antiferromagnetic coupling of the $7 \mu_B$ Eu f moment with a host magnetization consisting of a $\sim 2 \mu_B$ Fe spin moment and a $-0.2 \mu_B$ Fe orbital moment, both on a per formula unit basis. This is distinct from an induced magnetization due to hybridization with Eu because in that case there would be no metastable state with the host magnetization parallel to the Eu magnetization. The orbital moment of Fe agrees with the value from Fe $L_{2,3}$ edge XMCD measurements, whereas the Fe spin moment is larger in the calculation.

LSDA was found to overestimate the size of the ordered Fe spin moment by about $0.3 \mu_B$ in related compounds AFe$_4$Sb$_{12}$ ($A = Na$ or K) [14]. A similar situation may be happening in our calculations. Alternatively, the smaller Fe spin moment observed in the XMCD experiment in a field of 2 Tesla could be due to a more complex spin arrangement in the Fe sublattice which reduces the net ferromagnetic component. Considering that the other $n_e = 23.5$ compounds, CaFe$_4$Sb$_{12}$, SrFe$_4$Sb$_{12}$, and BaFe$_4$Sb$_{12}$ are all highly renormalized paramagnets with evidence for ferromagnetic quantum fluctuations regardless of the different filling ion sizes [17], one may speculate that EuFe$_4$Sb$_{12}$ is an analogous compound, but that the quantum fluctuations are suppressed by interaction with the Eu.

The ordering of Fe moments in EuFe$_4$Sb$_{12}$ found in our XMCD experiments indicates the absence of spin fluctuations, which prevent magnetic ordering of Fe in CaFe$_4$Sb$_{12}$. Spin fluctuations in Ca$^{2+}$ and Ba$^{2+}$ filled iron antimonides are shown to be suppressed by a magnetic field [14].

The electronic density of states (DOS) for the anti-aligned ground state is shown in Fig. 4. As may be seen, the Fe derived DOS is exchange split by ~ 0.5 eV, opposite to the Eu splitting. The majority spin Fe valence bands are completely occupied (these are the down spin relative to the total magnetization). There is a small DOS extending upwards from the main valence band due to the light band characteristic of skutterudite antimonides, [18] but the
main Fe d DOS does not reach the Fermi energy, E_F. On the other hand, there is a large up spin minority Fe d contribution to the DOS around E_F. In both spin channels, there is a gap followed by mixed character conduction bands which are also exchange split. At low energies the excitations will necessarily be to the spin up minority spin d states, since there are no spin down valence states below the energy of the conduction bands. As energy is increased, the valence band edge will be reached, and then the spin down conduction band edge. This will result in a change of sign followed by a long tail with another sign change. This is seen in Fig. 4 which shows the calculated difference of Fe $2p$ XAS into spin up and spin down components with a 0.1 eV broadening.

EuFe$_4$Sb$_{12}$ is found to be almost half-metallic, which is consistent with the point-contact Andreev reflection measurements by Sheet et al. on KFe$_4$Sb$_{12}$ [19]. The exchange interaction between the $3d$ electrons of Fe and the $4f$ electrons of Eu$^{2+}$ suppresses the spin fluctuations of Fe in Eu$_{0.95}$Fe$_3$Sb$_{12}$ and helps to satisfy the Stoner criteria for ferromagnetism, $I_{ex}N_f(E_F) \approx 1$, where I_{ex} is the effective exchange interaction and $N(E_F)$ is the density of states at E_F. Therefore, we conclude that the interaction of Eu $4f$ moments with the nearly ferromagnetic [Fe$_3$Sb$_{12}$]$^{2-}$ host lattice plays a key role in the stability of ferromagnetism with an enhanced T_C in Eu$_{0.95}$Fe$_3$Sb$_{12}$.
