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ABSTRACT

The relationship between proximity-induced magnetism (PIM) at the heavy metal/ferromagnet interface and spin-transport across such
interfaces has generated significant debate. To investigate the link between the two, element specific x-ray magnetic circular dichroism and
ferromagnetic resonance measurements were made on the same CoFe/Au/Pt and NiFe/Au/Pt thin film samples with varying Au thickness,
with complementary SIMS analysis, which shows evidence of Ni diffusion from NiFe into the Pt. An approximately linear relationship is
observed between the magnitude of Pt PIM and magnitude of damping enhancement in both systems. The results demonstrate that elec-
tronic hybridization of the heavy metal and ferromagnet is required for a full understanding of damping enhancement and interfacial spin-
transport for spintronic devices.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0064336

A variety of phenomena at the interface between ferromagnetic
(FM) and non-magnetic (NM) thin-film multilayered systems control
nanomagnetic and spintronic behavior, the most significant being
spin-dependent transport across the FM/NM interfaces, which under-
pins both giant1,2 and tunnelling3–7 magnetoresistance. When the NM
layer is a heavy metal (HM), the propagation of pure spin-currents
across the FM/HM interface yields fascinating behavior. For example,
the injection of a spin-current from the HM into the FM, generated by
the spin Hall effect,8,9 produces a spin–orbit torque that can switch the
FM magnetization. Alternatively, leakage of spin-current from the FM
into the HM layer enhances the damping of ferromagnetic resonance
via spin-pumping.10–13 Electronic hybridization between the FM and
HM layers can lead to a proximity-induced-magnetic moment (PIM)
in the HM if it is close to the Stoner criterion,14 which has been
observed in Pt layered with transition metal ferromagnets using ele-
ment specific x-ray magnetic circular dichroism (XMCD).15–19 The
influence and significance of PIM on spin transport across the

interface between a HM and a magnetic layer have generated consider-
able research, particularly regarding the role of PIM in the enhance-
ment of damping.20–29 These studies report contradictory conclusions,
either supporting or negating the role of PIM in spin transport and
damping enhancement. For metallic FM/HM systems, a recent study,
where Pt PIM was modified by alloying with Au, claimed irrelevance
of PIM on interfacial spin torques.22 Another concluded that spin
memory loss was unaffected by PIM.29 However, a ferromagnetic reso-
nance (FMR) study reported that a reduction in Pt PIM resulted in a
decrease in the interfacial contribution to damping.20,30 The contro-
versy is not limited to transition metal/HM systems, with studies of
PIM and spin transport in ferrimagnetic YIG/Pt, reporting that PIM
has either no effect, as determined from FMR measurements,31 or a
significant effect, from temperature-dependent spin Hall effect mea-
surements32 and angular-dependent FMR analysis.33

This paper reports a clear correlation between Pt PIM and damp-
ing in FM/Au/Pt systems, where Pt PIM is tuned by varying the Au
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spacer layer. The magnitude of PIM is probed directly with Pt L-edge
XMCD, and damping is measured with FMR. The correlation between
PIM and damping is clearly established for two different FM layered
systems. The unambiguous results not only show that PIM is critically
relevant to the enhancement of the damping, but also indicate that
spin pumping alone does not fully capture the physics behind interface
enhanced damping, as is often assumed, and that electronic hybridiza-
tion between the FM and HM polarized orbitals ought to be accounted
for a complete understanding of spin transport in these systems.

Samples were grown using magnetron sputtering onto thermally
oxidized Si substrates, with an Au spacer layer (SL) of increasing thick-
ness along one dimension in both Ni80Fe20 (7 nm)/Au-wedge/Pt
(4 nm) (Ni80Fe20 for simplicity, hereafter denoted as NiFe) and Cu
(2 nm)/Co25Fe75 (7 nm)/Au-wedge/Pt (4 nm) systems (Co25Fe75, here-
after denoted as CoFe). The Au thickness was varied from 0 to 3nm
over a wedge distance of 16mm. The thin-film CoFe alloy is expected
to be bcc structured,34 and the NiFe,35 Au, and Pt to be fcc structured.
Two additional samples capped with Cu but without the Pt layer were
fabricated as reference structures. Critically, Au was selected as the
spacer layer because although a ferromagnetic spin moment has been
found in Au nanoparticles36 and a Au PIM observed at the interface
with Co18 and NiFe,37 the effect of an Au layer on the enhancement of
damping is known to be small.38 This is due to the large spin diffusion
length of Au39 and the filled 5d states,40 so any induced moment on
the Au will have a negligible impact on the interfacial spin transport
phenomena.41

A schematic illustration of the wedge samples and the structural
profiles of the two multilayered structures, determined from off reso-
nance x-ray reflectivity (XRR), are shown in Fig. 1, at the thicker end
of the Au wedge (2.2 nm), with a beam width of 0.1mm. The XRR
data were analyzed using the GenX code42 to obtain best fitting scat-
tering length density (SLD) profiles, which shows the uniform layer
thicknesses and the interface transitions between the layers.
Compositional sections were obtained using Secondary Ion Mass
Spectrometry (SIMS) depth profiles, see also Fig. 1. The SIMS primary
beam was rastered over 250� 250 lm2, while the analysis area was
limited to a rectangular region 10 200 lm2. Note the SIMS measure-
ments reveal an extended Ni distribution beyond the NiFe layer
toward the surface of the sample, which also corresponds with the dif-
ferent SLD observed in the Au region from the XRR analysis.

FMR measurements were made as a function of increasing Au
thickness using a Vector Network Analyzer (VNA) and co-planar
waveguide system over both wide frequency and magnetic field ranges
at room temperature. Samples were placed face down on a waveguide
and measured along the wedge at regular intervals. The 0.45mm signal
line excited a range of less than 0.1 nm of Au thicknesses. Figure 2(a)
presents typical FMR data, with the insets showing examples of the
real and imaginary components of the FMR signal at two frequencies
and the main figure showing the magnetic field linewidth as a function
of frequency, fitted with the linear relation,

DH ¼ 4pa
c

f þ DH0; (1)

where DH0 is the extrinsic damping term, c is the gyromagnetic ratio,
and a is the Gilbert damping term, which contains both bulk and
interfacial contributions.

For Cu-capped FM samples, the measured damping values of
0.00736 0.0005 (NiFe) and 0.00556 0.0003 (CoFe) are consistent

with reported bulk damping values.43,44 With an Au SL layer and a Cu
cap, an increase in damping was observed with increasing Au thick-
ness, with the enhancement above the bulk damping values being less
than 10% for the CoFe and less than 20% for the NiFe case at the
thickest Au SL. This difference in the magnitude of the damping
enhancement may be associated with the crystal structure at the inter-
face,45 which is nominally fcc/fcc for NiFe/Au and bcc/fcc for CoFe/
Au, and/or increased intermixing and Ni diffusion in the NiFe/Au sys-
tem, which is evidenced from SIMS.

For the two FM/Au/Pt systems, the damping a is shown as a
function of the Au spacer layer thickness in Fig. 2(b). Pt in direct

FIG. 1. (a) A schematic showing the thin film structure with an Au thickness wedge.
The black arrow denotes the direction of beam propagation, with the red region rep-
resenting the 0.1 mm area probed. (b) Examples of off resonance x-ray reflectivity
data with best fits, taken at thicker Au spacer layer values with (c) and (d) corre-
sponding scattering length density (SLD) profiles and element separated SIMS pro-
files for the two systems, showing the sample structures and interface widths.
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contact with the FM layer approximately doubles the damping com-
pared with a Cu cap and 0nm Au. For the CoFe/Au/Pt, the damping
falls almost to the bulk value beyond 1.5 nm, the small remaining
damping enhancement in the CoFe sample can be largely attributed to
the Au interface mentioned earlier. In contrast, while the interfacial
damping contribution initially falls in the NiFe/Au/Pt system with
increasing Au thickness up to 1.5nm, a significant enhancement in
the damping persists for the thickest Au spacer. This persistent
enhancement is much larger than the damping with an Au SL in the

Cu capped reference sample, indicating a significant contribution
from the Pt layer to the damping enhancement.

PIM in the Pt layer was probed in the same samples via Pt L3
edge (11.564 keV) XMCD measurements at the 4-ID-D beamline of
the Advanced Photon Source, Argonne National Laboratory. The rela-
tive changes in the Pt PIM were measured in 2mm steps along the Au
SL wedge with a beam of width 25lm. Element specific hysteresis
loops and scans of the peak XMCD signal (a proxy for the moment) as
a function of position along the wedge were both used to map the
changes of Pt PIM with Au thickness. The measurements were made
at a fixed angle of incidence of 2:28

�
with respect to the sample sur-

face, with an energy dispersive fluorescence detector and a variable
magnetic field of up to 60:6 kOe applied in-plane and co-planar with
the beam axis. At this angle, the x-ray beam penetrates the entire Pt
and Au layers. The measured XMCD signal was taken as Iþ�I�

IþþI�, where
Iþ and I� denote the spectra for opposite circular polarizations, for a
fixed magnetic field.

The variations of the Pt PIM as a function of the Au SL thickness
are shown in Fig. 3, an exponential fit was used to parameterize the
PIM data for comparison with the damping data at the equivalent
thicknesses. For both the CoFe and NiFe samples, the Pt XMCD signal
falls exponentially over a similar length-scale (1.86 0.2nm) as the Au
SL thickness increases. However, while the Pt PIM in the CoFe system
effectively falls to zero beyond 1.5 nm of Au spacer, in contrast, in the
NiFe sample, the Pt moment does not fall to zero, but to a sustained
measurable value above 1.5nm of Au. These trends are also evident in
the hysteresis loops. The dependence of the Pt PIM on the Au SL
thickness in these two systems gives the first indication of the relation-
ship between Pt PIM and a, as shown in Fig. 2(b).

The persistence of a Pt PIM for all Au SL thicknesses in the NiFe
sample is initially surprising but can be explained and allows for a
direct comparison of Pt PIM and the enhancement of damping. While
the two multilayered samples have the same nominal FM/Au/Pt struc-
ture, elemental mapping with SIMS reveals the distribution of Ni in
the NiFe sample, which extends beyond the NiFe layer into the Au
and Pt layers, see Fig. 1(d). The diffusion of Ni into the Pt enables
3d � 5d hybridization beyond the immediate interface, which explains
the Pt PIMmeasured for all Au SL thicknesses in the NiFe sample.

The relationship between the measured damping and the PIM in
Pt is shown for both the CoFe and the NiFe samples in Fig. 4. This
shows that a significant enhancement in the damping occurs only with

FIG. 2. (a) Representative frequency dependence of FMR field linewidth with the
straight line fit for the NiFe/Au(0.7 nm)/Pt sample. Insets are examples of the real
(blue) and imaginary (orange) data fitted as a function of field at 4 and 30 GHz,
respectively. (b) The damping as a function of Au thickness for the Cu (2 nm)/CoFe
(7 nm)/Au/Pt (4 nm) and NiFe (7 nm)/Au/Pt (4 nm) samples. The dotted lines indi-
cate the bulk damping from the reference samples.

FIG. 3. Measured XMCD as a function of Au spacer thickness at both the Pt L3 edge, with element specific hysteresis loops at three positions across the wedge inset, for (a)
Cu (2 nm)/CoFe (7 nm)/Au/Pt (4 nm) and (b) NiFe (7 nm)/Au/Pt (4 nm). Solid lines are best fitting exponential functions.
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a PIM in the Pt, and that the enhancement of the damping is directly
proportional to the magnitude of the Pt PIM, irrespective of the inter-
face quality or the presence of extended intermixing. Further details of
the relationship between interface structure and PIM will be given in a
subsequent paper.

The enhancement of the damping in FM/HM systems46 is com-
monly explained within the spin pumping formalism, where non-
equilibrium spin accumulation from increasingly damped processing
magnetization in the FM drives a pure spin current across the interface
into the HM.11,47–49 This enhancement of the damping is determined
by the efficiency of the spin transport across the interface, which
depends upon the matching of spin conductance channels and the
spin diffusion length of the HM.10 In this formalism, PIM plays no
role, as the equilibrium enhanced spin susceptibility does not affect the
Sharvin conductance or the non-equilibrium transfer of spin current
across the interface.12 However, Omelchenko et al. explain that while
PIM is not explicit in the mathematical representation of spin pump-
ing, it plays an essential role in the quantitative values of key interfacial
parameters, such as the spin mixing conductance. In particular, it was
reported that the PIM acts to dephase the spin current, thereby short-
ening the spin diffusion length.50 It has also been shown that a FM
layer coupled to a magnetic layer near to Tc, rather than a NM layer,
shows enhanced spin-pumping due to fluctuations of the interface
spin conductance.51,52

An alternative explanation of interface-enhanced magnetization
damping was developed by Barati et al.53 using the tight-binding
approach of Kambersk�y54 that considers relaxation via inter- and
intra-band transitions arising from spin–orbit coupling (SOC)55 across
the FM/HM interface. This theoretical approach showed that in con-
trast to Au that has little effect on the damping, layering with Pt and
Pd significantly increases the damping, due to strong SOC and orbital
hybridization with the 3d orbitals in the transition metal FM. Since
this orbital hybridization is also responsible for PIM in the HM layer,16

a clear connection between interfacial enhancement of damping and
PIM emerges.

Though PIM is not the sole factor determining efficient spin
transport across interfaces, these results highlight the relevance of PIM

in interfacial spin transport and related spintronic phenomena, in
marked contrast to conclusions of some previous reports.22,29

In conclusion, a direct relationship between the enhancement of
damping and HM PIM was demonstrated, showing a significant
enhancement of the damping occurs only with a PIM on the Pt, and
the enhancement is directly proportional to the magnitude of the PIM.
This relationship between PIM and the enhancement of damping
opens questions about the physical basis for the enhanced damping,
which suggest a reevaluation of the explicit role of PIM within the
spin-pumping model and further theoretical consideration of the role
of 3d � 5d hybridization, which gives rise to PIM, in relation to the
enhancement of the damping. More generally, these results indicate
that PIM in HMs has wider implications in spintronics, such as for
spin transport, that need further experimental investigation and theo-
retical consideration.
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