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1 Introduction

The program elegant [1] performs symplectic integration for hard-edge dipoles and multipoles using
the exact Hamiltonian. This was implemented many years ago and never written down, but there
are often questions about it. Hence, we’ve recorded the method in this note. This method is not
original but was cobbled together from studying several sources, e.g., [2] and [3].

2 Hamiltonian and Definitions

The exact Hamiltonian for a combined function sector bend is[2]

H = −
eAs(x, y)

c
− (1 + h0x)

√

E2

c2
− m2c2 − p2

x − p2
y, (1)

where As is the scalar magnetic potential, E is the energy, h0 is the design curvature of the magnet,
px is the transverse horizontal momentum, and py is the transverse vertical momentum. Defining
(1 + δ) = p/p0, qx = px/p0, and qy = py/p0, we have

H = Hf + Hd (2)

where

Hf = −
eAs(x, y)

p0
(3)

is the part of the Hamiltonian pertaining to fields and

Hd = − (1 + h0x)
√

(1 + δ)2 − q2
x − q2

y. (4)

is the Hamiltonian for a generalized drift (possibly in curvilinear coordinates if h0 6= 0).

3 Integration for Dipole

The motion will be integrated using a drift-kick-drift technique (perhaps in higher order). For a
drift, Hamilton’s equations for the momenta are

dqx

ds
= −

∂Hd

∂x
= h0

√

f2 − q2
x, (5)

and
dqy

ds
= −

∂Hd

∂y
= 0, (6)

where f =
√

(1 + δ)2 − q2
y is a constant during the drift. Equation (5) is solved by

qx(s) = f sin(h0s + φ), (7)

where φ = sin−1 qx(0)/f .
For the coordinates, we have

dx

ds
=

∂Hd

∂qx

=
qx(1 + h0x)
√

f2 − q2
x

, (8)
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and
dy

ds
=

∂Hd

∂qy

=
qy(1 + h0x)
√

f2 − q2
x

. (9)

Using Equation (7) we can rewrite Equation 8 as

∫ x(s)

x(0)

dx

1 + h0x
=

∫ s

0

tan(h0s + φ), (10)

giving

x(s) =
1

h0

(

−1 + (1 + h0x(0))
cosφ

cos(h0s + φ)

)

(11)

Using this, we can integrate Equation (9), obtaining

y(s) = y(0) +
1 + h0x(0)

fh0
qy cosφ (tan(h0s + φ) − tan φ) . (12)

For the kicks, we refer to the Hf part of the Hamiltonian, giving

dqx

ds
=

e

p0

∂As

∂x
= −

eBy

p0
(13)

and
dqy

ds
=

e

p0

∂As

∂y
=

eBx

p0
. (14)

Derivation of the expressions for Bx and By is beyond the scope of this note, but uses the recursion
technique [4]. In the case of a bending magnet, this is limited to 10th order in x and y.

The kicks are imparted per

∆qx = −∆s
By

R
(1 + h0x) (15)

and

∆qy = ∆s
Bx

R
(1 + h0x), (16)

where R is the beam rigidity and the (1 + h0x) factors include the lengthening of the interval due

to a beam offset. One might argue that this factor should be
√

1 + x′2 + y′2 + h0x, but then we’d
have a kick depending on the momenta, which is not symplectic.

These equations are used to integrate motion in elegant’s CSBEND and CSRCSBEND elements.

4 Integration for a Multipole

In the case where h0 = 0, the expressions are considerably simplified. In particular, both qx and qy

are constant in the drift portion. Hence,

x(s) = x(0) +
qxs

√

f2 − q2
x

(17)

and
y(s) = y(0) +

qys
√

f2 − q2
x

. (18)

The expressions for the kicks are given by Equations (15) and (16) with h0 = 0.
These equations are used to integrate motion in elegant’s KQUAD, KSEXT, KQUSE, FMULT, and

MULT elements.

5 Synchrotron Radiation

Synchrotron radiation is implemented in a less rigorous fashion. In particular, radiation kicks are
imparted after the magnetic field kicks are imparted. This is discussed elsewhere [5, 6].
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6 Discussion and Conclusion

We have exhibited expressions showing how elegant performs symplectic integration of hard-edge
dipoles and multipoles. The expressions involve no approximations to the Hamiltonian or equations
of motion, beyond the drift-kick-drift factorization. Hence, they are good for arbitrary momentum
offset and coordinate deviations.

7 Revision Notes

Revision 1 Fixed two mistakes in transcribing equations 1 and 4. Thanks to Y. Roblin (JLab) for pointing
this out.

Revision 2 Fixed some typos pointed out by L. Emery.
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