
Parallel SDDS: A Scientific High-Performance I/O Interface∗

Hairong Shang† , Yusong Wang, Robert Soliday, Michael Borland, ANL, Argonne, IL 60439, USA

Abstract

Use of SDDS, the Self-Describing Data Sets file proto-
col and toolkit, has been a great benefit to development of
several accelerator simulation codes. However, the serial
nature of SDDS was found to be a bottleneck for SDDS-
compliant simulation programs such as parallel elegant. A
parallel version of SDDS would be expected to yield signif-
icant dividends for runs involving large numbers of simula-
tion particles. In this paper, we present a parallel interface
for reading and writing SDDS files. This interface is de-
rived from serial SDDS with minimal changes, but defines
semantics for parallel access and is tailored for high per-
formance. The underlying parallel IO is built on MPI-IO.
The performance of parallel SDDS and parallel HDF5 are
studied and compared. Our tests indicate better scalability
of parallel SDDS compared to HDF5. We see significant
I/O performance improvement with this parallel SDDS in-
terface.

INTRODUCTION

SDDS[1] is a self-describing data file protocol devel-
oped at Argonne National Laboratory’s Advanced Photon
Source (APS). It is a standardized way to store and ac-
cess data, and is the basis of a toolkit[2] of interopera-
ble accelerator physics programs. Over the years, several
SDDS-compliant accelerator programs (e.g,clinchor [3],
elegant [4], and shower[5]) have been developed at
the APS. Also, many existing accelerator design tools for
which the source code is available have been converted to
read and write SDDS files. This allows physicists to read-
ily use several codes in combination, with greater speed,
flexibility, and accuracy than otherwise possible. In addi-
tion to requiring accelerator codes to read and write SDDS
files, we created a suite of generic data processing and dis-
play tools that work with SDDS files. In effect, we created
a common pre- and postprocssing toolkit that is used by
our codes and codes we have modified. This set of approx-
imately 80 generic programs is referred to as the SDDS
Toolkit[2].

A major advantage of using SDDS files is that data from
one code can more readily be used by another. The self-
describing nature of the files makes this robust, meaning
that one code can be upgraded without requiring a change
of the other code. In addition, with SDDS it is straight-
forward to process and display data from several codes to-

∗Work supported by the U.S. Department of Energy, Office of Basic
Energy Sciences, under Contract No. DE-AC02-06CH11357.

† shang@aps.anl.gov

gether, which blurs the line between the separate codes and
allows them to be used as a unit [7]. The SDDS toolkit also
provides the ability to make transformations of data, which
is useful when codes have different conventions (e.g. for
phase-space quantities). Finally, using SDDS means that
adding capabilities to a simulation code is faster and easier.
The new data is simply placed in SDDS files where it can
be accessed with the existing suite of tools[2].

In addition to the SDDS Toolkit, users can import SDDS
data directly into programming environments like C/C++,,
FORTRAN, IDL, Java, MATLAB, and Tcl/Tk, using li-
braries created and supported by APS. These libraries, like
the rest of the SDDS software and our simulation codes,
are covered by an Open Source license and available for
download from our web site. The codes discussed are all
available for UNIX environments, including LINUX, So-
laris, and MAC OS-X, and also (usually) for Microsoft
Windows. The programelegant [4] was the first of the
SDDS-compliant accelerator codes, and it is widely used
for accelerator design and simulation. It is at the cen-
ter of the SDDS-compliant accelerator simulation codes.
The computing power ofelegant has been enhanced sig-
nificantly because of recent parallelizations and optimiza-
tions [6]. However, the SDDS tools with sequential ex-
ecution are a bottleneck for both memory and I/O opera-
tions. Therefore, parallel SDDS is required for large sim-
ulations, as well as analysis and visualizations of the re-
sulting large data sets. This paper introduces the design,
implementation, and performance study on parallel SDDS.
Since HDF5[10] is another popular scientific data format,
the performance of parallel HDF5 is also studied on Jazz
for comparison. Although HDF5 already supports parallel
I/O, it is not necessarily beneficial to switch from SDDS
to HDF5, given the large number of programs and appli-
cations that already use SDDS. Only if HDF5 offers a sig-
nificant performance advantage over parallel SDDS would
such a conversion be considered.

SDDS File Format And Data Storage

An SDDS file is referred to as a “data set”. Each data
set consists of an ASCII header describing the data that is
stored in the file, followed by zero or more “data pages”.
The data may be in ASCII or unformatted (i.e., “binary”).
Each data page is an instance of the structure defined by
the header. That is, while the specific data may vary from
page to page, the structure of the data may not. Three types
of entities may be present in each page: parameters, arrays,
and columns. Each of these may contain data of a single
data type, with the choices being long and short integer,



single and double precision floating point, single charac-
ter, and character string. The names, units, data types, and
so forth of these entities are defined in the header. Param-
eters are scalar entities. That is, each parameter defined
in the header has a single value for each page. Arrays are
multidimensional entities with potentially varying numbers
of elements. While there is no restriction on the number
of dimensions an array may contain, this quantity is fixed
throughout the file for each array. However, the size of the
array may vary from page to page. All columns in a data
set are organized into a single table, called the “tabular data
section.” Thus, all columns must contain the same number
of entries, that number being the number of rows in the ta-
ble. There is no restriction on how many rows the tabular
data may contain, nor on the mixing of data types in the
tabular data. The tabular data is stored in the file by row
major order, which is partly a legacy of SDDS’s origins in
the APS control system, where it is used to collect time-
series data.

PARALLEL SDDS IMPLEMENTATION

Parallel SDDS is built on top of MPI-IO, and derived
from serial SDDS with minimal changes. In parallel
SDDS, a file is opened, operated on, and closed by the
participating processors in a communication group defined
by the user interface. Other memory access functions are
retained from serial SDDS. Collective IO has been found
to be much more effective than independent IO for non-
contiguous storage[10], both independent and collective
MPI-IO is implemented in parallel SDDS and the perfor-
mance was studied too. In order to study the performance
of collective IO, column majored parallel SDDS was also
implemented.

In parallel SDDS, each processor holds the SDDS header
data and the column data for only part of the rows, the total
rows being the sum of the row numbers of all processors.

Similar to serial SDDS, parallel SDDS reads or writes
a file page by page. For parallel SDDS page reading, first
read the header using the serial SDDS functions and then
close the file. Depends on input request, either all pro-
cessors read the header or the master processor reads the
header and then broadcast to other processors, this reduces
the file IO load. Next, using MPI file open to open the file
and then read the page title information which includes the
parameters (if any), arrays (if any), and the total number or
rows (totalrows) in the current page. Either all processors
read the title information or the master processor reads it
and then broadcast to other processors if requested. Finally,
each processor reads totalrows/nprocessors + leftrow,
the left row is 1 if the processor ID is less than or equal
to total rows % nprocessors, otherwise, it is 0.

For parallel SDDS page writing, all processors hold the
layout information that is defined by the existing serial
SDDS functions, and part of the tabular data partitioned
by row. The file is opened for write with MPI IO. Only
the master processor writes the ASCII layout, parameters

(if any), arrays (if any), and the number of total rows, and
then its own part of tabular data into the file. Other proces-
sors write their own part of the tabular data into the file at
the same time.

PARALLEL SDDS AND PARALLEL HDF5
PERFORMANCE COMPARISON

Since the structure of current SDDS is in row majored
order, collective IO would not improve the performance
of row-majored parallel SDDS. Initially, independent par-
allel SDDS was implemented and compared with parallel
HDF5. And to be simple, all processors read the header,
number of rows, parameters and arrays in each page. Par-
allel SDDS was compiled with MPICH1 on ANL Jazz and
the performance was studied with PVFS version1 file sys-
tem. There are 8 PVFS parallel file system on Jazz, and
the PVFS file system on Jazz is running over 10/100 eth-
ernet. The theoretical peak I/O rate is 10 MB/sec per node
on Jazz.

Since HDF5[10] is another popular scientific data for-
mat, a parallel HDF5 write/read code (ph5example.c)
which comes along with the parallel HDF5 package was
compiled with the same compiler used by parallel SDDS,
and the performance of parallel HDF5 is studied on Jazz
for comparison.

Reading Performance

Two HDF5 data files were generated in row majored or-
der by ph5example, whose size is 1.2GB (1245710336B)
and 600MB (622856192B) respectively. Each file has one
two-dimensional dataset, and the dataset dimension sizes
are 811008x384 for the 1.2GB file, and 811008x384 for
the 600MB file, respectively. We choose row majored or-
der because currently SDDS files are stored in row ma-
jored order. The dimensions are chosen by the require-
ment of ph5example that all dimensions must be a multi-
ple of the number of processors, and 1, 2, 3, 4, 6, 8, 12,
16, 24, 32, 48, 64 processors are used for performance
study. However, SDDS does not have any limitations on
the dimension sizes. The two HDF5 files were converted
into two SDDS files using our hdf2sdds toolkit program.
The SDDS file sizes are 1245722085B, and 622861029B
respectively. The sizes of the two SDDS files are bigger
than those of HDF5, because SDDS header is written in
ascii, and there are many columns in both files. The more
columns there are, the larger the SDDS header will be. If
we instead convert a 150000000x8 float (with actual data
size of 1.2GB) HDF5 data set into an 8-column SDDS file
with 150000000 rows, the SDDS file size is 1200000632B
with a overhead of 632 bytes. The corresponding HDF5
data file size is 1200002048B with 2048 bytes overhead.
In this case, SDDS has less overhead than HDF5. The read
performance of both parallel SDDS and parallel HDF5 was
studied with the PVFS version 1 file system on Jazz. The
results of reading two files are shown in Figures 1.



Figure 1: psdds and phdf I/O performance of reading
600MB and 1.2GB files on Jazz.

Note that the number of processors used in HDF studies
are 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48, 56, and 64, while for
parallel SDDS we chose finer spacing of the number of pro-
cessors. This is because parallel HDF5 requires the dimen-
sion sizes be multiples of the number of processors, while
parallel SDDS has no such limitations. Figure 1 shows that
independent HDF5 I/O has better performance than collec-
tive HDF5 for reading the 600MB file. In addition, inde-
pendent HDF5 has better performance than parallel SDDS
when the number of processors is less than 32, however, the
speed of HDF5 starts drop after 32, and its performance is
similar to parallel SDDS after that. The speed of parallel
SDDS continues increasing until the number of processors
reaches 48 and then starts to drop. It indicates that parallel
SDDS has better scalability than collective HDF5. Appar-
ently, collective HDF5 is not a good choice for reading such
a 600MB row majored file.

However, the performance of independent HDF5 in
reading a 1.2G file is so poor that our performance study
could not be completed with available sources. It is much
worse than collective HDF5 and parallel SDDS. The per-
formance of collective HDF5 is slightly better than parallel
SDDS when the number of processors is less than 20. How-
ever, the performance of SDDS is consistently better than
collective HDF5 when the number of processors is greater
than 20.

Data access performance is affected by many factors, in-
cluding caching, network bandwidth, and latency. Jazz has
two kinds of nodes, large memory nodes which have 2.4GB
memory, and smaller memory node which have 1.2GB
memory. The network bandwidth is 10 MB/s. The band-
width per processor achieved by parallel HDF5 is close to
10 MB/s with a small number of processors. However, it
drops quickly to 3 MB/s as number of processors increases.
The bandwidth of parallel SDDS is about 6 MB/s from 1
processors to 56 processors, and drops at 64 processors.
The relatively low efficiency of SDDS at low number of
processors compared to parallel HDF5 may have two rea-

sons: First, reading SDDS data requires at least two times
as much memory as the data size; this results from the way
SDDS encapsulates the data. Therefore the nodes may not
have enough memory to hold the data and swap space may
be needed when the number of processors is small. Sec-
ond, all processors read the SDDS layout at the same time.
Therefore, the time spent in layout reading increases as
number of processors increases, which reduces the speed
when the file header is big (as in our test files) and the num-
ber of processors is large. For example, the time to read the
1.2GB file header with one processor is 0.01 seconds, but
increases to 2 seconds with 64 processors, while the data
access time is only 3 seconds. The layout reading can be
improved in the future.

Still, the results indicate that parallel SDDS has better
scalability than parallel HDF, and has better performance
with large files.

Writing Performance

The writing performance of parallel HDF5 and sdds was
studied for writing a 811008x192 and 811008x384 two di-
mensional dataset into HDF5 files or SDDS files. Both
collective and independent HDF5 writing were tested. The
performance of parallel SDDS writing was studied by read-
ing a previously generated SDDS file of 811008x192 data
or 11008x384 data into an SDDS dataset, copying it into
a new dataset in memory, and then writing the new dataset
into an SDDS file. This doubles the memory size for stor-
ing two SDDS datasets in the memory, so that memory
requirements are more than four times of size of the data
file. The purpose of using copying in testing parallel SDDS
writing is to verify that the write operation produces a file
that is identical to the original (which was the case in all
tests). The performance of parallel SDDS writing may be
improved when writing data generated internally into an
SDDS file.

Since only one processor writes the layout, the time
spent in writing layout does not increase as the number of
processors increases. However, the layout writting can be
improved by buffered IO, since right now each definition
uses a separate write operation and the I/O times are the
sum of number of parameters, arrays and columns, plus the
time required to write other (generally small) parts of the
SDDS header. Buffering could reduce this by a significant
factor. The results of writing files are shown in Figure 2.

Different from reading, Figures 2 shows that indepen-
dent HDF has better performance for writing row-majored
ordered HDF5 file, and that the performance of collec-
tive HDF5 writing is worse than both independent HDF
and parallel SDDS. Similar to reading, independent HDF5
performs better than parallel SDDS with a small number
of processors, but as the number of processors increases,
parallel SDDS performs better than independent HDF5 for
writing both 600MB and 1.2GB file. The results again in-
dicate that parallel SDDS has better scalability than HDF5,
and better performance with large files.



Figure 2: psdds and phdf I/O performance of writing
600MB and 1.2GB file on Jazz

We made further improvements in parallel SDDS which
include 1) changing the header reading strategy so that only
one processor reads the layout information, parameters and
total number of rows, and then broadcasts this informa-
tion. 2) using buffered IO for writing the layout, param-
eters, arrays, and the number of rows and for reading pa-
rameters, arrays, and the total number of rows 3) paral-
lel reading and writing of SDDS in column majored order.
Since the collective IO seems to have better performance
on GPFS file system, we also implemented collective paral-
lel SDDS. The performance was studied on Intrepid (IBM
Blue Gene/P) GPFS file system[11] with reading/writing
2.4GB file. But we did not have enough time to study the
performance of HDF5 on intrepid, so there is no compari-
son here. The results are:

• As expected, collective IO does not benefit row ma-
jored SDDS data. But it does benefit the column
majored SDDS data especially in writing. The writ-
ing performance of column majored SDDS data is
1GB/sec with 350 processors, this is close to the
thearetical throughput 1GB/sec with 320 processors
since the bandwidth of one IO node which has 32 pro-
cessors is 100MB/s.

• Similar to the Jazz PVFS system, independent IO
shows good performance on GPFS in both reading and
writing row majored SDDS data. And the throughput
reaches the measurement of blue gene GPFS system
where the reading throughput is 240MB/sec and the
writing throughput is 250MB/sec[12].

CONCLUSION

In this work, we implemented a parallel SDDS interface
with independent IO and completed a performance study of
parallel SDDS and parallel HDF5 on Jazz with PVFS ver-
sion 1 file system based MPICH1 MPI-IO. Parallel SDDS
turned to have better scalability than HDF5 on PVFS file
system and better performance with large files. We also

implemented parallel SDDS with independent IO and col-
lective IO for row majored and column majored SDDS
data, and studied the performance on intrepid (blue gene
P) GPFS file system, and the results show that the collec-
tive writing of column majored SDDS data reaches the the-
oretical throughput of IO nodes. Indepent parallel SDDS,
which is currently being used in parallel applications such
as Pelegant[13], shows good performance for both reading
and writing row ordered SDDS data.

ACKNOWLEDGMENTS

We thank Robert Latham and Sam Lang from MCS ANL
for providing helpful information on Jazz MPICH1 com-
piler, and instructions on how to run jobs with PVFS on
jazz. Also we appreciate their useful information about
Jazz hardware and valuable suggestions. We thank for
the 2007 INCITE workshop organized by IBM and ANL
ALCF division.

REFERENCES

[1] M. Borland, “A Self-Describing File Protocol for Simu-
lation Integration and Shared Postprocessors,” 1995 PAC,
Dallas, Texas, 2184(1996)

[2] M. Borland, L. Emery, H. Shang, and B. Soliday, “SDDS-
Based Software Tools for Accelerator Design”, 2003 PAC,
Portland, Oregon.

[3] L. Emery, “Required Cavity HOM deQing Calculated
from Probability Estimates of Coupled Bunch Instabili-
ties in the APS Ring,” Proceedings of PAC93, 3360-3362,
www.jacow.org.

[4] M. Borland, “elegant: A Flexible SDDS-Compliant Code
for Accelerator Simulation,” Advanced Photon Source LS-
287, September 2000.

[5] L. Emery, “Beam Simulation and Radiation Dose Calcula-
tion at the Advanced Photon Source withshower, an Inter-
face Program to the EGS4 Code System,” Proceedings of
PAC96, 2309-2311, www.jacow.org.

[6] Y. Wang, M.Borland, Proceedings of PAC07, Albuquerque,
New Mexico, USA June 25-29, 2007.

[7] M. Borland, Y. C. Chae, P. Emma, J. W. Lewellen, V.
Bharadwaj, W. M. Fawley, P. Krejcik, C. Limborg, S. V.
Milton, H.-D. Nuhn, R. Soliday, M. Woodley, “Start-to-end
simulation of self-amlified spontaneous emission free elec-
tron lasers from the gun through the undulator,” NIM A 483
(2002) 268-272.

[8] W. Gropp, E. Lusk, and R. Thakur, “Using MPI-2: Ad-
vanced Features of the Mesaage-Passing Interface”, MIT
press, Cambridge, MA, 199.

[9] http://www.lcrc.anl.gov/jazz/Documentation/index.php

[10] C. Chilan, M. Yang, A. Cheng, L. Arber, “Parallel I/O
Performance Study with HDF5, A Scientific Data Package”,
www.spscicomp.org/ScicomP12/Presentations/User/Yang.pdf

[11] https://wiki.alcf.anl.gov/index.php/FileSystems/

[12] http://www.redbooks.ibm.com/abstracts/redp4168.html?Open

[13] Y. Wang,et al., these proceedings.


