

The different ways of treating CCLRC magnetic structures in FullProf Standard Fourier coefficients refinement: A magnetic phase has Jbt = +/- 1 $\mathbf{M}(\mathbf{h}) = p \sum_{i=1}^{n} O_{j} f_{j}(\mathbf{h}) T_{j} \sum_{s} \mathbf{S}_{\mathbf{k}js} \exp \left\{ 2\pi i \left[(\mathbf{H} + \mathbf{k}) \left\{ S | \mathbf{t} \right\}_{s} \mathbf{r}_{j} - \Phi_{\mathbf{k}j} \right] \right\}$ The magnetic symmetry is introduced together with explicit symmetry operators of the crystal structure. The refined variables are directly the components of the S_{kjs} vectors

L.C. Chapon, Magnetism tutorial, ACNS 2006

ISIS

CCLR Standard Fourier components refinement _____ 4.09 ! Data for PHASE number: 2 ==> Current R_Bragg for Pattern# 1: 1-----LaMnO3
 !
 Nat Dis Mom Pr1 Pr2 Pr3
 Jbt Irf
 Isy Str Furth

 1
 0
 0.00
 0.0
 1.0
 0
 -1
 0
 0
 ATZ Nvk Npr More 0.000 0 7 0 Pmmm <--Space group symbol Nsym Cen Laue MagMat 4 1 3 1 SYMM x,y,z MSYM u,v,w,0.0 SYMM -x,-y,z+1/2 MSYM -u,-v,w,0.0 SYMM -x+1/2,y+1/2,-z+1/2 MSYM u,-v,w,0.0 SYMM x+1/2,-y+1/2,-z MSYM -u, v,w,0.0
 1

 'Atom Typ Mag Vek X Y Z Biso Occ

 ! Ix
 Iy
 Iz
 beta11
 beta22
 beta33
 MagPh

 Mn1
 MMN3
 1
 0
 0.50000
 0.00000
 0.00000
 0.04338
 1.00000
 Rx Ry $\mathbf{R}\mathbf{z}$ 0.000 3.847 0.000 0.00 0.00 0.00 0.00 0.00 0.00 131.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.0000 ISIS 0.00 0.00 °·L.C. Cifaptin, Magnetism tutolial, ACNS 2006

The different ways of treating magnetic structures in FullProf
Coefficients of basis functions refinement:
A magnetic phase has $Jbt = +/- 1$ and $Isy=-2$
$\mathbf{M}(\mathbf{h}) = p \sum_{j=1}^{n} O_{j} f_{j}(\mathbf{h}) T_{j} \sum_{n\lambda} C_{n\lambda}^{\nu} \sum_{s} \mathbf{S}_{n\lambda}^{k\nu}(js) exp \left\{ 2\pi i \left[\mathbf{h}_{s} \mathbf{r}_{j} - \Phi_{kj} \right] \right\}$
The basis functions of the Irreps (in numerical form) are introduced together with explicit symmetry $\mathbf{S}_{kjs} = \sum_{n\lambda} C_{n\lambda}^{\nu} \mathbf{S}_{n\lambda}^{k\nu} (js)$
operators of the crystal structure.
The refined variables are directly the CV coefficients C1, C2, C3 CC. Chapon, Magnetism tutorial, ACNS 2006

CCLR	 Basis functions coefficients refinemen
LaMnO3 ! !Nat Dis Mom Pr1 1 0 0 0.0 ! P m m m	Pr2 Pr3 Dbt Trf Isy Str Furth ATZ Nvk Npr More 0.0 1.0 1 0 -2 0 0 0.000 0 7 0 <space group="" symbol<="" td=""></space>
insym Cen La 4 1	1 -1 3
! Real(0)-Imagin	ary(1) indicator for Ci
0 0 0	
!	
SYMM x,y,z	
BASR 1 0 0	0 1 0 0 0 1
BASI 0 0 0	0 0 0 0 0 0
SYMM -x+1,-y,z+1	12
BASR -1 0 0	0-1 0 0 0 1
BASI 0 0 0	
SYMM -x+1/2,y+1/	2,-2+1/2
DASK 1 0 0	
SYMM w-1/2 -w+1/	0 0 0 0 0 0 2 - -
BASE -1 0 0	-, -
BASI 0 0 0	
1	
Atom Typ Mag V	ak X Y Z Biso Occ C1 C2 C3
. C4 C5	C6 C7 C8 C9 MagPh
Mn1 MMN3 1 0	0.50000 0.00000 0.00000 0.04338 1.00000 0.000 3.847 0.000
	0.00 0.00 0.00 0.00 0.00 0.00 131.00 0.00
0.000 0.000	0.000 0.000 0.000 0.00000
0.00 0.00	°.°°L.C.°Chapon°, Magnetism tutorial, ACNS 2006

Simulated Annealing (SA):

The SA method is a general purpose optimisation technique

for large combinatorial problems introduced by:

Kirpatrick, Gelatt and Vecchi, *Science* **220**, 671-680 (1983).

The function, $E(\omega)$ to be optimised with respect to the configuration described by the vector state ω is called the "cost" function.

L.C. Chapon, Magnetism tutorial, ACNS 2006

Simulated Annealing (SA):

The SA method applied to structural problems:

- J. Pannetier, J. Bassas-Alsina, J. Rodríguez-Carvajal and V. Caignaert, *Nature* 346, 343-345 (1990)
- J.M. Newsam, M.W. Deem and C.M. Freeman, Accuracy in Powder Diffraction II. NIST Special Publ. No. **846**, 80-91 (1992)
- J. Rodríguez-Carvajal, Physica B **192**, 55-69 (1993) (program MAGSAN)

L.C. Chapon, Magnetism tutorial, ACNS 2006

