

Ey CCLRC What is a magnetic structure?
Paramagnetic state:
Snapshot of magnetic moment configuration
$E_{i j}=-J_{i j} \mathbf{S}_{i} \cdot \mathbf{S}_{j}$
$\left\langle\mathbf{S}_{i}\right\rangle=0$

L.C. Chapon, Magnetism tutorial, ACNS 2006

ISIS

(Ey CCLRC Types of magnetic structures

Very often magnetic structures are complex due to - competing exchange interactions (i.e. RKKY)

- geometrical frustration
- competition between exchange and single ion anisotropies

Ey CCLRC Formalism of prop. Vector : Basics

Position of atom j in unit-cell । is given by:
$R_{l j}=R_{l}+r_{j}$ where R_{l} is a pure lattice translation

E C C CLRC Formalism of prop. Vector: Basics

A magnetic structure is fully described by:

- Wave-vector(s) \{k\}.
- Fourier components \mathbf{S}_{kj} for each magnetic atom j and wave-vector k . \mathbf{S}_{kj} is a complex vector (6 components) !!!
- Phase for each magnetic atom j, $\boldsymbol{\Phi}_{\mathrm{k}}$

L.C. Chapon, Magnetism tutorial, ACNS 2006

- The magnetic structure may be described within the crystallographic unit cell
- Magnetic symmetry: conventional crystallography plus time reversal operator: crystallographic magnetic groups
L.C. Chapon, Magnetism tutorial, ACNS 2006

ISIS

REAL Fourier coefficients \equiv magnetic moments
The magnetic symmetry may also be described using crystallographic magnetic space groups
L.C. Chapon, Magnetism tutorial, ACNS 2006

ISIS

$C \subset L R C$ Fourier coefficients of helical structures

kinterior of the Brillouin zone

- Real component of S_{k} perpendicular to the imaginary component

$$
\begin{gathered}
\mathbf{S}_{\mathbf{k} j}=\frac{1}{2}\left[m_{u j} \mathbf{u}_{j}+i m_{v j} \mathbf{v}_{j}\right] \exp \left(-2 \pi i \phi_{\mathbf{k} j}\right) \\
\mathbf{m}_{l j}=m_{u j} \mathbf{u}_{j} \cos 2 \pi\left(\mathbf{k} \mathbf{R}_{l}+\phi_{\mathbf{k} j}\right)+m_{v j} \mathbf{v}_{j} \sin 2 \pi\left(\mathbf{k} \mathbf{R}_{l}+\phi_{\mathbf{k} j}\right)
\end{gathered}
$$

Eycclrc
 Symmetry analysis

- Problem is underdetermined:
-large number of parameters
(6 Fourier coefs.+phase per magnetic atom and per k)
-usually few observations, especially in powder patterns.
- Magnetic form factor

```
E/#CCLRC
Examples. Fstudio
```



```
ww-llb.cea.frffullweb
\{ Type of lattice P, C, I, F.....
LATTICE P4
```



``` Propagation vector(s)
K 0.50 .00 .0
``` \(\qquad\)
``` List of symmetry operators with associated magnetic MSYM uvw operator
MATOM Ce1 CE 0.00 .00 .0
SKP \(112.00 .00 .00 .00 .00 .00 .0 \quad\) Magnetic atom \({ }_{3}\)

\section*{EVCCLRC Representation theory}
- Method for simplifying analysis of a problem in systems possessing some degree of symmetry.
- What is allowed vs. what is not allowed

Keyword: Invariance of the physical properties under application of symmetry operators.
L.C. Chapon, Magnetism tutorial, ACNS 2006

ISIS


\section*{(6) CCLRC \\ Landau theory}
- Ordering is characterized by a function \(\rho(x)\) that changes at the transition.
-Above \(T_{c}, \rho_{0}(x)\) is invariant under all operations of \(G_{0}\)
-Below \(T_{c}, \rho_{1}(x)\) is invariant under all operations of \(G\)
\(\delta \rho=\rho_{1}-\rho_{0}=\sum_{n} \sum_{i} c_{i}^{n} \Phi_{i}^{n}(x)\) \(\qquad\) Basis functions of irreducib Representation of \(\mathrm{G}_{0}\).
- At \(T=T_{c}\), all the coefficients \(c_{i}^{n}\) vanish

\section*{ECCLRC Phase transitions in solids}

Phase transitions often take place between phases of different symmetry.
High symmetry phase, Group \(G_{0}\)

\section*{(I,P)}

Low symmetry phase, Group \(\mathrm{G}_{1}\)
- This is a "spontaneous" symmetry-breaking process.
- Transition are classified as either \(1^{\text {st }}\) order (latent heat) or \(2^{\text {d }}\) order (or continuous)

A simple example: Paramagnetic -> Ferromagnetic transition


\section*{E"ECLRC}

\section*{Landau theory (2)}
\(\Phi\) is invariant under operations of G , each order of the expansion can be written is given by some polynomal invariants of \(c_{i}^{\text {n. }}\)
\(\Phi=\Phi_{0}+\sum_{n^{\prime}} A^{n}(P, T) \sum_{i}\left(c_{i}^{n}\right)^{2}+\) \(\qquad\)

 above \(\mathrm{T}_{\mathrm{c}}\)
- In order to have broken symmetry, one A has to change sign at the transition.
\(\Phi=\Phi_{0}+\frac{1}{2} a(T)\left(T-T_{c}\right) \eta^{2}+C \eta^{4}+\ldots\)
In a second order phase transition,
a single symmetry mode is involved.
\(\eta \quad\) L.C. Chapon, Magnetism tutorial, ACNS 2006
ISIS


\section*{E\%CCLRC Symmetry Analysis}
\[
\mathbf{S}_{\mathbf{k} j s}=\sum_{n \lambda} C_{n \lambda}^{v} \mathbf{S}_{n \lambda}^{\mathbf{k} v}(j s)
\]

The coefficientsC \({ }_{n \lambda}^{v}\) are the free parameters of the magnetic structure (order parameters of the phase transition in the Landau theory)
Indices:
\(\mathbf{k}\) : reference to the propagation vector
\(v\) : reference to the irreducible representation \(\Gamma_{v}\) \(n\) : index running from 1 up to \(n_{v} \Rightarrow \Gamma_{\text {Mag }}=\sum_{\Theta v} n_{v} \Gamma_{v}\)
\(\lambda\) : index running from 1 up to \(\operatorname{dim}\left(\Gamma_{v}\right)\)
L.C. Chapon, Magnetism tutorial, ACNS 2006

ISIS

\section*{E CCLRC Representation analysis}

Kovalev's book:
Kovalev's bo
Irreducible
epresentations of space
group"

Software:
-MODY
-SarAh
-Baslreps


\section*{ECCLRC \\ The different ways of treating magnetic structures in FullProf}

Standard Fourier coefficients refinement:
A magnetic phase has Jbt \(=+/-1\)
\(\mathbf{M}(\mathbf{h})=p \sum_{j=1}^{n} O_{j} f_{j}(\mathbf{h}) T_{j} \sum_{s} \mathbf{S}_{\mathbf{k}, j} \exp \left\{2 \pi i\left[(\mathbf{H}+\mathbf{k})\{S \mid \mathbf{t}\}_{s} \mathbf{r}_{j}-\Phi_{\mathrm{k} j}\right]\right\}\)

The magnetic symmetry is introduced together with explicit symmetry operators of the crystal structure. The refined variables are directly the components of the \(\mathrm{S}_{\mathrm{kjs}}\) vectors
L.C. Chapon, Magnetism tutorial, ACNS 2006

ISIS

\section*{Standard Fourier components refinement}
```

Data for PHASE number:

```
Data for PHASE number:
2 ==> Current R_Bragg for Pattern#
2 ==> Current R_Bragg for Pattern#
4.09
4.09
aMnO3
```



```
Nsym Cen Laue MagMat
SYMM x,y,z
```



```
SYMM -x,-y,z+1/2
SYMM -x+1/2,y+1/2,-z+1/2
MSYM \begin{array}{c}{u,v,w,0.0}\\{x+1/2,-v+1/2,}\end{array}}
SYMM x+1/2,-y+1/2,
SYM -u,v,w,0.0
```



```
Mn1 MNN3 1 00 0.50000 0.00000
llllllllll
```



```
E%CCLRC Basis functions coefficients refinement
tamos
```



```
Pmmm
    Cen Laue Ireps N_--Sas
: Real(0)-Imaginary(1) indicator for Ci
MSMAR X,Y,z
MASI
MAST
```



```
[.000
```


E C CCLRC Simulated Annealing (SA):

The SA method is a general purpose optimisation technique
for large combinatorial problems introduced by:
Kirpatrick, Gelatt and Vecchi, Science 220, 671-680 (1983).

The function, $E(\omega)$ to be optimised with respect to the configuration described by the vector state ω is called the "cost" function.
L.C. Chapon, Magnetism tutorial, ACNS $2006 \quad$ SIS ,

CCLRC
 The Program SuperCell

Program: SuperCell (J.Rodríguez-Carvajal, LLB-December-1998)

- This program can be used to index superstructure reflections from a powder diffraction pattern.
- The first approach consist in searching the best "magnetic unit cell" compatible with a set of observed SUPERSTRUCTURE lines in the powder diffraction pattern.
- If the first approach fails to give a suitable solution, the superstructure
may be incommensurate and a direct search for the propagation vector and one of its harmonics have to be used.
L.C. Chapon, Magnetism tutorial, ACNS 2006

ISIS

E C C CRC Simulated Annealing (SA):

The SA method applied to structural problems:

- J. Pannetier, J. Bassas-Alsina, J. Rodríguez-Carvajal and V. Caignaert, Nature 346, 343-345 (1990)
- J.M. Newsam, M.W. Deem and C.M. Freeman, Accuracy in Powder Diffraction II.
NIST Special Publ. No. 846, 80-91 (1992)
- J. Rodríguez-Carvajal, Physica B 192, 55-69 (1993) (program MAGSAN)
(6) CCLRC

Simulated Annealing (SA):

Minimize a cost function, energy $E(\omega)$, with respect to the configuration vector ω.
Origin: Monte Carlo methods for simulating properties of liquids (Metropolis algorithm)

Algorithm trying to mimic the process of annealing a sample to obtain a good crystalline state (ground state) A temperature schedule (starting high temperature + cooling rate) is needed.
Procedure to generate new configurations (Markov chain) and a Boltzmann probability to explore the phase space (importance sampling)
L.C. Chapon, Magnetism tutorial, ACNS 2006

ISIS.

\#CCLRC
 The Simulated Annealing Algorithm

begin
Initialise (set to zero useful quantities, do preliminary calculations
$\mathrm{t}=1$
do
do
$\omega_{\text {old }} \rightarrow \omega_{\text {new }}, \Delta=E\left(\omega_{\text {new }}\right)-\mathrm{E}\left(\omega_{\text {old }}\right)$
if $\Delta \leq 0$ then accept, else
if $\exp \left(-\Delta / T_{t}\right)>$ random $[0,1]$ then accep
if accept then Update (replace $\omega_{\text {old }}$ by $\omega_{\text {new }}$)
until equilibrium is approached closely enough (Ncyc)
$T_{t+1}=f\left(T_{t}\right)$ (decrease temperature, usually $\left.T_{t+1}=q T_{t}, q \sim 0.9\right)$
$t=t+1$
until stop criterion is true (maximum \mathbf{t}, convergence, low \% accepted...)
end

\# CCLRC Simulated Annealing run of FullProf

```
-FullPor:2k_Muliti_Pattern
    M,
            M,
#
```

START Date: $10 / 07 / 2003$ Tine \Rightarrow 07:24:51.793
Reading control file * PCR

$\Rightarrow * * * *$ Simulated anneaitng search for starting configuration ****

-Look directly for the components of S_{k} and phases, explaining the experimental data
-Minimize a reliability factor with respect to the "configuration vector"

$$
\begin{gathered}
\dot{\mathbf{u}}=\left|C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, \ldots C_{m}\right\rangle \\
R_{m}(\mathbf{u})=c \sum_{r=1}^{N} \mid G_{o b s}^{2}\left(\mathbf{h}_{r}\right)-G_{c a l c}^{2}\left(\mathbf{h}_{r}, \grave{\mathbf{u}}\right)
\end{gathered}
$$

Ey CCLRC Simulated Annealing run of FullProf

ISIS

Behavior of parameters in Simulated Annealing runs

ISIS

