

Bicolor Symmetry Groups

- 1929 Heesch, introduces the antiidentity operation properties: u² = 1, ut = tu for all t∈T aka time reversal group = {1,1'}
 1945 Shubnikov, re-introduces concept
- 1951 Shubnikov, describes and illustrates all of the bicolor point groups
- 1955 Belov et al., first complete listing of the bicolor space groups
- 1957 Zamorzaev, group theoretical derivation of bicolor space groups
- 1965 Opechowski and Guccione, first complete derivation and enumeration of the bicolor space groups
- 2001 Litvin, corrected Opechowski-Guccione symbols

Derivation of Antisymmetry Point Groups If M is an antisymmetry group, and 1' an antiidentity operation												
Type I, M = G for some crystallographic point group G												
Type II, M =	= <mark>G</mark> ∪ G1' f	or some crystallog	raphic point group G									
Type III, M G,	= H ∪ (G\H where H is)1' for some crysta a halving group of	llographic point group G.									
	exampl	e: G = 2/m = {1,2,i,	m}									
н	2 = {1,2}	m = {1,m}	1 = {1,i}									
G\H	{i,m}	{2,i}	{2,m}									
(G\H)1'		{2',i'} {1,2',i',m}	{2',m'}									
M	{1,2,1,111 } 2/m'	{1,2,1,11} 2'/m	{1,2',i',m'} 2'/m'									
141	2/111	Z /111	∠ /111									

Point group	nontrivial	magnetic	point	groups	
1					
-1	-1'				
m	m'				
2	2'				
2/m	2'/m	2/m'	2'/m'		
222	2'2'2				
mm2	m'm2'	m'm'2			
mmm	m'mm	m'm'm	m'm'm'		
4	4'				
-4	-4'				
4/m	4'/m	4/m'	4'/m'		
422	4'22'	42'2'			
4mm	4'm'm	4m'm'			
-42m	-4'2'm	-4'2m'	-42'm'		
4/mmm	4/m'mm	4'/mm'm	4'/m'm'm	4/mm'm'	4/m'm'm'
3					

Point	nontrivial	magnetic	point	groups	
group	nonunviai	magnetic	point	groups	
-6	-6'				
32	32'				
3m	3m'				
-6m2	-6'm'2	-6'm2'	-6m'2'		
6	6'				
-3	-3'				
6/m	6'/m	6/m'	6'/m'		
622	6'2'2	62'2'			
6mm	6'm'm	6m'm'			
-3m	-3'm	-3m'	-3'm'		
6/mmm	6/m'mm	6'/mm'm	6'/m'm'm	6/mm'm'	6/m'm'm'
23					
m-3	m'-3				
-43m	-4'3m'				
432	4'32'				
m-3m	m'-3m	m-3m'	m'-3m'		

Derivation of Antisymmetry Space Groups If M is an antisymmetry group, and 1' an antiidentity operation Type I, M = F for some crystallographic space group F 230 uncolored Type II, M = $F \cup F1$ ' for some crystallographic space group F 230 grey Type III, $M = D \cup (F \setminus D)1'$ for some crystallographic space group F, where D is a subgroup of index two of F. a. M_T, where D is an equi-translation subgroup of F 674 (D has the same lattice type as F and M) b. M_P, where D is an equi-class subgroup of F 517 (M_R contains anti-translations and is doubled with respect to F) **1651 Total**

	matrix representations of antisymmetry operations											
4 X 4	$\begin{bmatrix} \overline{1} \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 1 0 0	0 0 1 0	0 0 0 1	[1 0 0 0	0 1 0 0	0 0 1 0	$\begin{bmatrix} 0 \\ 0 \\ 0 \\ \overline{1} \end{bmatrix}$	$\begin{bmatrix} \overline{1} \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 1 0 0	0 0 1 0	$\begin{array}{c} 0\\ 0\\ 0\\ \overline{1} \end{array}$
	ł	^[010] 2 half-turn			ar	antiidentity			an		^{0]} 2' alf-1	turn
Seitz notatior	n (2	2 _y 0	,0,0	0)	(*	1 0,	0,0)'	(2	2 _y 0),0,0	D)'

Cosets

Let G denote a group, H a subgroup of G and $a \in G$. Then the *right coset of H in G determined by a*, denoted Ha, is

Ha = {ha | h ∈ H}

The left coset of H in G determined by a, denoted aH, is

 $aH = \{ah \mid h \in H\}$

A subgroup H of a group G is said to be normal if gH = Hg for all $g \in G$, i.e., left and right cosets are the same.

Cosets

Example: Let G = <i>4</i> = {1,4,2 right cosets 2g and the left	2,4 ⁻¹ }, H = 2 = {1,2}. Find the cosets g2 for each $g \in 4$.
2 *1 = {1,2}1 = {1,2}	1*2 = 1{1,2} = {1,2}
2*4 = {1,2}4 = {4,4 -1}	4*2 = 4{1,2} = {4,4 ⁻¹ }
2 *2 = {1,2}2 = {2,1}	2*2 = 2{1,2} = {2,1}
2*4 ⁻¹ = {1,2} 4 ⁻¹ = {4 ⁻¹ ,4}	4 ⁻¹ *2 = {1,2}4 ⁻¹ = {4 ⁻¹ ,4}
Two unique cosets of 2 in 4 The right and left cosets ar subgroup.	4. e the same, so 2 is a normal

lf M is	Derivation of Antisymmetry Space Groups an antisymmetry group, and 1' an antiidentity operation
Туре	I, M = F for some crystallographic space group F
Туре	II, M = F \cup F1' for some crystallographic space group F
Туре	III, M = D ∪ (F\D)1' for some crystallographic space group F, where D is a subgroup of index two of F.
	a. M _T , where D is an equi-translation subgroup of F (D has the same lattice type as F and M)
	 b. M_R, where D is an equi-class subgroup of F (M_R contains anti-translations and is doubled with respect to F)

Cosets

Of great interest is the coset decomposition of the space groups with respect to their translational subgroups.

Let $T = (I|t_j)$ be a translational group defining a lattice, and W be an arbitrary symmetry operation (W|w) of space group G.

Then for all of the products $(I|t_j)(W|w) = (W|w+t_j)$, for every j the matrix part W is the same.

Thus, *TW* denotes the right coset decomposition of *T* in G. The left cosets WT are the same, so translational subgroups are normal subgroups.

The decomposition of the space groups into cosets is the basis of description of the space groups in the International Tables.

Magnetic Space Group Type IIIa, M _T , Example P2'/m (No. 11.3.61)
$F = P2/m = T(1 0,0,0) + T(2_y 0,0,0) + T(m_y 0,0,0) + T(i 0,0,0)$
D = Pm = T(1 0,0,0) + T(m _y 0,0,0)
$M_{T} = D + (F \setminus D)1'$
(F\D) = T(2 _y 0,0,0) + T(i 0,0,0)
(F\D)1' = T(2 _y 0,0,0)' + T(i 0,0,0)'
$M_T = T(1 0,0,0) + T(m_y 0,0,0) + T(2_y 0,0,0)' + T(i 0,0,0)'$

Magnetic Space Group Type IIIb, M_R, Example P_{2b}C'a'2₁ (No. 29.7.204) F = Pca2₁ = T + T(m_x|1/2,0,1/2) + T(m_y|1/2,0,0) + T(2_z|0,0,1/2) P_{2b} = P_{a,2b,c} $t_{\alpha} = b = (0,1,0)$ D = Pca2₁=T^D + T^D(m_x|1/2,1,1/2) + T^D(m_y|1/2,1,0) + T^D(2_z|0,0,1/2) If it is primed in the Opechowski-Guccione symbol then it appears in D coupled with t_a, and primed in (F\D)1'. If it is unprimed in the Opechowski-Guccione symbol then it appears unchanged in D, and coupled with t_a and primed in (F\D)1'. M_R=T^D(1|0,0,0) + T^D(m_x|1/2,1,1/2) + T^D(m_y|1/2,1,0) + T^D(2_z|0,0,1/2) +T^D(1|0,0,0)' + T^D(m_x|1/2,0,1/2)' + T^D(m_y|1/2,0,0)' + T^D(2_z|0,1/2)

	\bigcirc						
15.1.92	C2/c			(1 0,0,0)	(2 _y 0,0,1/2)	(1 0,0,0)	(m _y 0,0,1/2
15.2.93	C2/c1'			Opechowski-	Guccione s	ymbol of t	he
15.3.94	C2'/c	Cc	(0,0,0;a,b,c)	magnetic spa		•	
15.4.95	C2/c'	C2	(0,0,1/4;a,b,c)	(1 0,0,0)	(2 _y 0,0,1/2)	(1 0,0,0)	(m _y 0,0,1/2
15.5.96	C2'/c'	ΡT	(0,0,0;b,{a+b}/2,	:) (1 0,0,0)	(2 _y 0,0,1/2)'	(1 0,0,0)	(m _y 0,0,1/2
15.6.97	C _P 2/c	P2/c	(0,0,0;a,b,c)	(1 0,0,0)	(2 _y 0,0,1/2)	(1 0,0,0)	(m _y 0,0,1/2
15.7.98	C _P 2'/c	P21/c	(1/4,1/4,0;a,b,c)	(1 0,0,0)	(2 _y 1/2, 1/2, 1/2)	(1 1/2,1/2,0)	(m _y 0,0,1/2
ORTHORI	HOMBIC SYS	TEM					
16.1.99	P222			(1 0,0,0)	(2 _x 0,0,0)	(2 _y 0,0,0)	(2 _z 0,0,0)
16.2.100	P2221'						
16.3.101	P2'2'2	P2	(0,0,0;b,c,a)	(1 0,0,0)	(2 _x 0,0,0)'	(2 _y 0,0,0)'	(2 _z 0,0,0)
16.4.102	P _{2a} 222	P222	(0,0,0;2a,b,c)	(1 0,0,0)	(2 _x 0,0,0)	(2 _y 0,0,0)	$(2_z 0,0,0)$
16.5.103	P _c 222	C222	(0,0,0;2a,2b,c)	(1 0,0,0)	(2 _x 0,0,0)	(2 _y 0,0,0)	$(2_z 0,0,0)$
16.6.104	P _F 222	F222	(0,0,0;2a,2b,2c)	(1 0,0,0)	(2 _x 0,0,0)	(2 _y 0,0,0)	$(2_z 0,0,0)$
16.7.105	P ₂₀ 22'2'	P222 ₁	(0,0,0;a,b,2c)	(1 0,0,0)	(2 _x 0,0,0)	(2 _y 0,0,1)	(2 _z 0,0,1)

TRICLIN	C SYSTEM		
1.1.1	P1		(1 0,0,0)
1.2.2	P11'		
1.3.3	P ₂₈ 1	P1	(0,0 N1.N2.N3, where N1 is a sequence number for the group type to which F
2.1.4	belongs, numbered the same as given in the International Tables. N2 is a		
2.2.5	P11'		sequence number of the magnetic
2.3.6	PT	P1	(0,0 space group types of the superfamily
2.4.7	P₂₃1	P1	of F. Group types F always have the assigned number N1.1.N3, and group
MONOCI	INIC SYSTE	м	types F1' the assigned number N1.2.N3 . N3 is a global sequential
3.1.8	P2		numbering of the magnetic space
3.2.9	P21'		group types.
3.3.10	P2'	P1	(0,0,0;a,b,c) (1 0,0,0) (2 _y 0,0,0)'
3.4.11	P _{2a} 2	P2	(0,0,0;2a,b,c) (1 0,0,0) (2 _y 0,0,0)
3.5.12	P _{2b} 2	P2	(0,0,0;a,2b,c) (1 0,0,0) (2 _y 0,0,0)
3.6.13	P _c 2	C2	(0,0,0;2a,2b,c) (1 0,0,0) (2,0,0)
3.7.14	P _{2b} 2'	P2	(0,0,0;a,2b,c) (1 0,0,0) (2 _y 0,1,0)

		\wedge					
74.4.653	Imma'	lmm2	(0,1/4,0;a,b,c)	(1 0,0,0) (1 0,0,0)'	(2 _x 0,0,0)' (m _x 0,0,0)	(2 _y 0,1/2,0)' (m _y 0,1/2,0)	(2 _z 0,1/2,0) (m _z 0,1/2,0)'
74.5.654	lm'm'a	C2/c	(0,0,0;a+b,c,b)	(1 0.0.0) (1 0 grou	p type of th	(2 0,1/2,0)' (0,1/2,0)'	(2 _z 0,1/2,0) (m _z 0,1/2,0)
74.6.655	lmm'a'	C2/m	(0,0,0;a+b,a,c)	(1)0 subg	roup D of two of F	(2, <mark>0,1/2,0)'</mark> (m 0,1/2,0)'	(2 _z 0,1/2,0)" (m _z 0,1/2,0)"
74.7.656	lm'm'a'	12,2,2,	(0,0,1/4;a,b,c)	(1 0,0,0) (1 0,0,0)'	(2 _x 0,0,0) (m _x 0,0,0)'	(Z _y 0,1/2,0) (m _y 0,1/2,0)'	(2 _z 0,1/2,0) (m _z 0,1/2,0)
74.8.657	l _₽ mma	Pmma	(0,0,0;b,a,c)	(1 0,0,0) (1 0,0,0)	(2 _x 0,0,0) (m _x 0,0,0)	(2 _y 0,1/2,0) (m _y 0,1/2,0)	(2 _z 0,1/2,0) (m _z 0,1/2,0)
74.9.658	l _₽ m'm'a	Pnna	(0,0,0;b,a,c)	(1 0,0,0) (1 0,0,0)	(2 _x 1/2,1/2,1/2) (m _x 1/2,1/2,1/2)	$(2_y _{1/2}, 0, 1/2)$ $(m_y _{1/2}, 0, 1/2)$	(2 _z 0,1/2,0) (m _z 0,1/2,0)
74.10.659	l _p mm'a'	Pmna	(0,0,0;a,b,c)	(1 0,0,0) (1 0,0,0)	(2 _x 0,0,0) (m _x 0,0,0)	$(2_y _{1/2}, 0, 1/2)$ $(m_y _{1/2}, 0, 1/2)$	$(2_z 1/2, 0, 1/2)$ $(m_z 1/2, 0, 1/2)$
74.11.660	l _₽ m'ma'	Pnma	(0,0,0;a,b,c)	(1 0,0,0) (1 0,0,0)	$(2_x _{1/2,1/2,1/2})$ $(m_x _{1/2,1/2,1/2})$	$(2_{y} 0,1/2,0)$ $(m_{y} 0,1/2,0)$	(2 _z 1/2,0,1/2) (m _z 1/2,0,1/2)
TETRAGO	AL SYSTE	M					
75.1.661	P4			(1 0,0,0)	(4 _z 0,0,0)	(2 _z 0,0,0)	(4 ⁻¹ ,0,0,0)
75.2.662	P41'	\ /					
75.3.663	P4'	P2	(0,0,0;b,c,a)	(1 0,0,0)	(4 _z 0,0,0)'	$(2_z 0,0,0)$	(4z ⁻¹ 0,0,0)'
75.4.664	P ₂₀ 4	P4	(0,0,0;a,b,2c)	(1 0,0,0)	(4 _z 0,0,0)	(2 _z 0,0,0)	(4z ⁻¹ 0,0,0)

83.5.707	P4'/m'	P4	(0,0,0;a,b,c)	(1 0,0,0) (1 0,0,0)'	(4 _z 0,0,0)' (4 _z 0,0,0)	(2 _z 0,0,0) (m _z 0,0,0)'	$(4_z^{-1} 0,0,0)'$ $(4_z^{-1} 0,0,0)$
83.6.708	P ₂₀ 4/m	P4/m	(0,0,0;a,b,2c)	(1 0,0,0) (1 0,0,0)	$(4_z 0,0,0) \ (\overline{4}_z 0,0,0)$	(2 _z 0,0,0) (m _z 0,0,0)	$(4_{z}^{-1} 0,0,0) \ (\overline{4}_{z}^{-1} 0,0,0)$
83.7.709	P _₽ 4/m	P4/m	(0,0,0;a-b,a+b,c)	(1 0,0,0) (1 0,0,0) (1 0,0)	gin change	e and (0)	$(4_z^{-1} 0,0,0) \ (\overline{4_z}^{-1} 0,0,0)$
83.8.710	P _i 4/m	P4/m	(0,0,0;a-b,a+b,2c)	(10,0,)	entation of h respect t	- ($(4_z^{-1} 0,0,0)$ $(\overline{4}_z^{-1} 0,0,0)$
83.9.711	P _{2c} 4'/m	P4 ₂ /m	(0,0,0;a,b,2c)	(1 0,0,0) (1 0,0,0)	$(4_z 0,0,1)$ $(\overline{4}_z 0,0,1)$	(2 _z 0,0,0) (m _z 0,0,0)	$(4_{z}^{-1} 0,0,1)$ $(\overline{4}_{z}^{-1} 0,0,1)$
83.10.712	P _₽ 4/m'	P4/n	(1/2,1/2,0;a-b,a+b,c)	(1 0,0,0) (1 1,0,0)	$(4_2 0,0,0) \ (\overline{4}_2 1,0,0)$	(2, 0,0,0) (m ₂ 1,0,0)	$(4_{z}^{-1} 0,0,0) \ (\overline{4_{z}}^{-1} 1,0,0)$
84.1.713	P4₂/m			(1 0,0,0) (1 0,0,0)	(4 _z 0,0,1/2) (4 _z 0,0,1/2)	(2 _z 0,0,0) (m _z 0,0,0)	$(4_z^{-1} 0,0,1/2) \over (4_z^{-1} 0,0,1/2)$
84.2.714	P42/m1'						
84.3.715	P42'/m	P2/m	(0,0,0;b,c,a)	(1 0,0,0) (1 0,0,0)	$(\frac{4_z}{4_z} 0,0,1/2)'$ $(\overline{4_z} 0,0,1/2)'$	(2 _z 0,0,0) (m _z 0,0,0)	$(4_{z}^{-1} 0,0,1/2)'$ $(\overline{4}_{z}^{-1} 0,0,1/2)'$
84.4.716	P4 ₂ /m'	P4 ₂	(0,0,0;a,b,c)	(1 0,0,0) (1 0,0,0)'	$(\frac{4_z}{4_z} 0,0,1/2)$ $(\overline{4_z} 0,0,1/2)'$	(2 _z 0,0,0) (m _z 0,0,0)'	$(4_{z}^{-1} 0,0,1/2) \over (\overline{4}_{z}^{-1} 0,0,1/2)'$
84.5.717	P42'/m'	P4	(0,0,1/4;a,b,c)	(1 0,0,0) (1 0,0,0)	$(4_2 0,0,1/2)' \ (\overline{4}_2 0,0,1/2)$	(2 _z 0,0,0) (m _z 0,0,0)	$\frac{(4_z^{-1} 0,0,1/2)^{t}}{(\overline{4}_z^{-1} 0,0,1/2)}$
			\sim				

29.5.202	Pc'a'2,	P2,	(0,0,0;b,c,a)	(1 0,0,0)	(m, 1/2,0,1/2)	(m, 1/2,0,0)	(2 _z 0,0,1/2)
29.6.203	P_{2b} ca R	ecogn	izing the d	ifferent spa	ace group	o types,	(2 _z 0,0,1/2)
29.7.204	P _{2b} c'a	Т	ype I, unco	olored space	e groups	6	(2 _z 0,0,1/2)
30.1.205	Pnc2			(1 0,0,0)	(m _x 0,1/2,1/2)	(m _y 0,1/2,1/2)	(2, 0,0,0)
30.2.206	Pnc21'		K				
30.3.207	Pn'c2'	Pc	(0,1/4,0;a,b,c)	First entry	for each f	amily in	blue is
30.4.208	Pnc'2'	Pc	(0,0,0;c,a,b+c)	the regular	⁻ uncolore	d space	group
30.5.209	Pn'c'2	P2	(0,0,0;b,c,a)	(1 0,0,0)	(m _x 0,1/2,1/2)	(m _y 0,1/2,1/2)	(2 _z 0,0,0)
30.6.210	P _{2a} nc2	Pnc2	(0,0,0;2a,b,c)	(1 0,0,0)	$(m_x 0,1/2,1/2)$	$(m_y 0, 1/2, 1/2)$	$(2_z 0,0,0)$
30.7.211	P _{2a} nc'2'	Pnn2	(1/2,0,0;2a,b,o)	(1 0,0,0)	$(m_x 0,1/2,1/2)$	(m _y 1 1/2 1/2)	(2 _z 1,0,0)
31.1.212	Pmn2 ₁			(1 0,0,0)	(m _x 0,0,0)	(m _y 1/2,0,1/2)	(2 _z 1/2,0,1/2
31.2.213	Pmn2 ₁ 1'						
31.3.214	Pm'n2 ₁ '	Pc	(0,0,0;a,b,a+c)	(1 0,0,0)	(m _x 0,0,0)'	$(m_y _{1/2},0,1/2)$	(2 _z 1/2,0,1/2
31.4.215	Pmn'2 ₁ '	Pm	(0,0,0;b,a,c)	(1 0,0,0)	(m _x 0,0,0)	(m _y 1/2,0,1/2)	(2 _z 1/2,0,1/2
31.5.216	Pm'n'21	P2,	(1/4,0,0;b,c,a)	(1 0,0,0)	(m _x 0,0,0)'	(m _y 1/2,0,1/2)	(2 _z 1/2,0,1/2
31.6.217	$P_{2b}mn2_1$	Pmn2 ₁	(0,0,0;a,2b,c)	(1 0,0,0)	(m _x 0,0,0)	(m _y 1/2,0,1/2)	(2 _z 1/2,0,1/2

86.4.730	P4₂/n'	P4 ₂	(1/2,0,0;a,b,c)		(1 0,0,0) (1 1,2,1/2,1/2)'	$(4_z 1/2, 1/2, 1/2) (4_z 0, 0, 0)'$	(2 _z 0,0,0) (m _z 1/2,1/2,1/2)'	$(4_z^{-1} _{1/2,1/2,1/2})$ $(4_z^{-1} _{0,0,0})'$
86.5.731	P42'/n'	₽Ŧ	(0,0,0;a,b,c)		(1 0,0,0) (1 1,2,1,2,1,2)'	$(4_z 1/2, 1/2, 1/2)' (\overline{4_z} 0,0,0)$	(2 _z 0,0,0) (m _z 1/2,1/2,1/2)	$(4_{z}^{,1} _{1/2,1/2,1})$ $(\overline{4}_{z}^{,1} _{0,0,0})$
86.6.732	P ₁ 4 ₂ /n	l4₁/a	(0,0,0;a-b,a+b,2c)	/	(1 0,0,0) (1 1/2,1/2,1/2)	$\substack{(4_z 1/2,1/2,1/2)\\(4_z 0,0,0)}$	$(2_2 0,0,0)$ $(m_2 1/2,1/2,1/2)$	(4 ⁻¹ 1/2,1/2,1 (4 ⁻¹ 0,0,0)
87.1.733	14/m			/	(1 0,0,0) (1 0,0,0)	$(4_z 0,0,0) \ (4_z 0,0,0)$	(2 _z 0,0,0) (m _z 0,0,0)	(4z ⁻¹ 0,0,0) (4z ⁻¹ 0,0,0)
87.2.734 87.3.735	l4/m1' l4'/m	C2/m	(0.0.0;a+b,c,a)		(1 0.0.0)	(4 _z 0,0,0)'	(2, 0.0.0)	(4,-1 0,0,0)
01.3.135	14 /111	G2/m	(0,0,0,a+b,c,a)		(1 0,0,0)	$(\frac{4_{z}}{4_{z}} 0,0,0)'$	$(m_z 0,0,0)$ $(m_z 0,0,0)$	$(4_{z}^{-1} 0,0,0)$ $(4_{z}^{-1} 0,0,0)$
87. Cos	set rep	present	atives		(1 0,0,0) (1 0,0,0)'	$(4_z 0,0,0)$ $(\overline{4}_z 0,0,0)'$	(2 _z 0,0,0) (m _z 0,0,0)'	$(4_z^{-1} 0,0,0)$ $(4_z^{-1} 0,0,0)$
		compos etic sp	sition of ace		(1 0,0,0) (1 0,0,0)'	$(4_z 0,0,0)' \ (\overline{4}_z 0,0,0)$	(2 _z 0,0,0) (m _z 0,0,0)'	$(4_z^{-1} 0,0,0))$ $(\overline{4}_z^{-1} 0,0,0)$
87	•		ect to its		(1 0,0,0) (1 0,0,0)	$(4_z 0,0,0)$ $(\overline{4}_z 0,0,0)$	(2 _z 0,0,0) (m _z 0,0,0)	$(4_z^{-1} 0,0,0)$ $(\overline{4}_z^{-1} 0,0,0)$
87. trar	nslatio	nal sub	group.		(1 0,0,0) (1\0,0,0)	$(4_z 1/2,1/2,1/2) \ (\overline{4}_z 1/2,1/2,1/2)$	(2 _z 0,0,0) (m _z 0,0,0)	(4, ⁻¹ <i>1</i> /2,1/2, (4, ⁻¹ 1/2,1/2,
87.8.740	l _₽ 4/m'	P4/n	(1/2,0,1/4;a,b,c)		(1 0,0,8) (1 1,2,1/2,1%)	$(4_z 0,0,0) \ (4_z 1/2,1/2,1/2)$	(2 _z 0,0,0) (m _z 1/2,1/2,1/2)	$(4_z^{-1} 0,0,0)$ $(\overline{4}_z^{-1} 1/2,1/2)$

29.5.202	Pc'a'2,	P2,	(0,0,0;b,c,a)	(1 0,0,0)	(mx 1/2,0,1/2)	(m, 1/2,0,0)	(2, 0,0,1/2)
						,	1
29.6.203	P Rec	cogniz	ing the diffe	erent spac	e group	types,	(2 _z 0,0,1/2)
29.7.204	P ₂		Type II, g	grey grou	ps		(2 _z 0,0,1/2)
30.1.205	Pnc2			(1 0,0,0)	(m _x 0,1/2,1/2)	(m _y 0,1/2,1/2) (2 _z 0,0,0)
30.2.206	Pnc21'	>					
30.3.207	Pn'c2'	Pc	(0,1/4,0;a,b,c)	(1 0,0,0)	(m _x 0,1/2,1/2)'	(m _y 0,1/2,1/2) (2 _z 0,0,0)'
30.4.208	Pnc'2'	Pc	Second ent	rv for eac	h familv is	s the)' (2 _z 0,0,0)'
30.5.209	Pn'c'2	P2	grey space	-)' (2 _z 0,0,0)
30.6.210	P _{2a} nc2	Pnc2	the same a	•) (2 _z 0,0,0)
30.7.211	P _{2a} nc'2'	Pnn2	followed by	1'.		1/2) (2 _z 1,0,0)
31.1.212	Pmn2,			(1 0,0,0)	(m, 0.0,0)	(m, 1/2,0,1/2) (2, 1/2,0,1/2
31.2.213	Pmn2,1'	×.		(1,0,0,0)	(11,10,0,0)	(m _y 1/2,0,1/2	$(z_z 1/2, 0, 1/2)$
31.3.214	Pm'n2 ₁ '	Pc	(0,0,0;a,b,a+c)	(1 0,0,0)	(m _x 0,0,0)'	(m _y 1/2,0,1/2) (2 _z 1/2,0,1/2
31.4.215	Pmn'2 ₁ '	Pm	(0,0,0;b,a,c)	(1 0,0,0)	(m _x 0,0,0)	(m _y 1/2,0,1/2)' (2 _z 1/2,0,1/2
31.5.216	Pm'n'21	P2,	(1/4,0,0;b,c,a)	(1 0,0,0)	(m _x 0,0,0)'	(m _y 1/2,0,1/2)' (2 _z 1/2,0,1/2
31.6.217	$P_{2b}mn2_1$	Pmn2 ₁	(0,0,0;a,2b,c)	(1 0,0,0)	(m _x 0,0,0)	(m _y 1/2,0,1/2) (2 _z 1/2,0,1/2

29.5.202	Pc'a'2,	P2,	(0,0,0;b,c,a)	(1 0,0,0)	(m, 1/2,0,1/2)	(m, 1/2,0,0)	(2, 0,0,1/2)
	r.						
29.6.203	P_{2b} ca R	-	izing the dif	-			(2 _z 0,0,1/2)
29.7.204	P _{2b} c'a	Ту	/pe Illa, M _T (ι	no anti-tra	anslation	s)	(2 _z 0,0,1/2)
30.1.205	Pnc2			(1 0,0,0)	(m _x 0,1/2,1/2)	(m _y 0,1/2,1/2)	(2 _z 0,0,0)
30.2.206	Pnc21'						
30.3.207	Pn'c2'	Pc	(0,1/4,0;a,b,c)	(1 0,0,0)	(m _x 0,1/2,1/2)	(m _y 0,1/2,1/2)	(2 _z 0,0,0)'
30.4.208	Pnc'2'	Pc	(0,0,0;c,a,b+c)	(1 0,0,0)	$(m_x 0,1/2,1/2)$	(m _y 0,1/2,1/2)	(2 _z 0,0,0)'
30.5.209	Pn'c'2	P2	(0,0,0;b,c,a)	(1 0,0,0)	(m _x 0,1/2,1/2)	(m, 0,1/2,1/2)	(2 _z 0,0,0)
30.6.210	$P_{2a}nc2$	Pnc2	(0,0,0;2a,b,c)	(1 0,0,0)	$(m_x 0,1/2,1/2)$	$(m_y 0, 1/2, 1/2)$	$(2_z 0,0,0)$
30.7.211	P _{2a} nc'2'	Pnn2	(1/2,0,0;2a,b,c)	(1 0,0,0)	(m _x 0,1/2,1/2)	(m _y 1 1/2 1/2)	(2 _z 1,0,0)
				Entries wi	th primed		
31.1.212	Pmn2 ₁			coset repr	resentativo	es ^{,0,1/2)}	(2 _z 1/2,0,1/2]
31.2.213	Pmn2 ₁ 1'		L	/			
31.3.214	Pm'n2 ₁ '	Pc	(0,0,0;a,b,a+c)	(1 0,0,0)	(m _x 0,0,0)'	(m _y 1/2,0,1/2)	(2 _z 1/2,0,1/2)
31.4.215	Pmn'2 ₁ '	Pm	(0,0,0;b,a,c)	(1 0,0,0)	(m _x 0,0,0)	(m _y 1/2,0,1/2)	(2 _z 1/2,0,1/2)
31.5.216	Pm'n'2 ₁	P2,	(1/4,0,0;b,c,a)	(1 0,0,0)	(m _x 0,0,0)'	(m _y 1/2,0,1/2)	(2 _z 1/2,0,1/2)
31.6.217	$P_{2b}mn2_1$	Pmn2 ₁	(0,0,0;a,2b,c)	(1 0,0,0)	(m _x 0,0,0)	(m _y 1/2,0,1/2)	(2 _z 1/2,0,1/2

Typos in Opechowski & Guccione (1965) corrected by Opechowski (1986), given in Litvin (2001)					
Numbering In Table 1	Opechowski & Guccione (1965)	Opechowski (1986)			
16.4.102	P _{2s} 222	P _{2a} 222			
43.4.323	Fdd'2	Fd'd'2			
47.6.352	P _{2s} mmm	P _{2a} mmm			
67.17.593	C _ı m'm'a'	C _i m'ma'			
108.8.899	l4'cm'	l _₽ 4'cm'			
108.9.900	l4c'm'	ا _P 4c'm'			
124.1.1018	P4/mcr	P4/mcc			
132.4.1113	P4 ₂ /mcm'	P4 ₂ '/mcm'			

29.5.202	Pc'a'2,	P2,	(0,0,0;b,c,a)	(1 0,0,0)	(m _x 1/2,0,1/2)	(m _y 1/2,0,0)	(2 _z 0,0,1/2)
29.6.203	P25C8 R (ecogni	izing the dif	ferent spa	ace group	o types,	(2 _z 0,0,1/2
29.7.204	P _{2b} c'a	Тур	e IIIb, M _R (\	with anti-ti	ranslation	ns)	(2 _z 0,0,1/2
30.1.205	Pnc2			(1 0,0,0)	(m _x 0,1/2,1/2)	(m _y 0,1/2,1/2)	(2 _z 0,0,0)
30.2.206	Pnc21'						
30.3.207	Pn'c2'	Pc	(0,1/4,0;a,b,c)	(1 0,0,0)	(m _x 0,1/2,1/2)	(m _y 0,1/2,1/2)	(2 _z 0,0,0)
30.4.208	Pnc'2'	Pc	(0,0,0;c,a,b+c)	(1 0,0,0)	$(m_x 0,1/2,1/2)$	(m _y 0,1/2,1/2)	(2 _z 0,0,0)
30.5.209	Pn'c'2	P2	(0,0,0;b,c,a)	(1 0,0,0)	(m _x 0,1/2,1/2)	(m _y 0,1/2,1/2)	(2 _z 0,0,0)
30.6.210	P _{2a} nc2	Pnc2	(0,0,0;2a,b,c)	(1 0,0,0)	(m _x 0,1/2,1/2)	(m _y 0, 1/2, 1/2)	$(2_z 0,0,0)$
30.7.211	P _{2a} nc'2'	Pnn2	(1/2,0,0;2a,b,c)	(1 0,0,0)	(m _x 0,1/2,1/2)	(m _y 1 1/2 1/2)	(2,1,0,0)
31.1.212	Pmn2 ₁			E ntria	o with your	ringed	(2 _z 1/2,0,1
31.2.213	Pmn2,1'				s with unp		
31.3.214	Pm'n2 ₁ '	Pc	(0,0,0;a,b,a+c)		represent		(2 _z 1/2,0,1/
31.4.215	Pmn'2 ₁ '	Pm	(0,0,0;b,ā,c)		olored lat		(2 _z 1/2,0,1
31.5.216	Pm'n'2,	P2,	(1/4,0,0;b,c,a)	(1 0,0,0)	(m _x 0,0,0)'	(m _y 1/2,0,1/2)	(2 _z 1/2,0,1
31.6.217	P _{2b} mn2,	Pmn2,	(0,0,0;a,2b,c)	(1 0,0,0)	(m, 0,0,0)	(m, 1/2,0,1/2)	(2, 1/2,0,1

Other changes to Opechowski-Guccione symbols given by
Litvin (2001)
In both Opechowski & Guccione (1965) Opechowski (1986) the

symbol P_{2b} c'ca is listed twice, in the numbering of Table 1, at entries 54.11.438 and 54.13.440. The second has been changed to P_{2b} c'ca', a magnetic group which has a non-magnetic subgroup of the type Pnna.

Numbering In Table 1	Opechowski & Guccione (1965) Opechowski (1986)	Table 1 Litvin (2001)
131.13.1109	$P_P 4_2'/m'mc$	P _P 4 ₂ '/m'mc'
177.7.1385	P _{2c} 6'22	P _{2c} 6'22'
180.7.1402	P _{2c} 6 ₂ '22	P _{2c} 6 ₂ '22'

References

 Belov, N.V., Neronova, N.N, & Smirnova, T.S. (1957). Sov. Phys. Crystallogr. 1, 487-488. see also (1955) Trudy Inst. Krist. Acad. SSSR 11 33-67 (in Russian). Boisen, M.B. Jr. (1977) The adjunction of antiidentity operations to point groups, including a derivation of the magnetic point groups. Z. Krist. 145, S. 197-215. Heesch, H. (1929) Z. Krist. 71, 95. International Tables for X-ray Crystallography (1952) Vol. 1, N.F.M. Henry & K. Lonsdale, Eds., Birmingham: Kynock Press. International Tables for Crystallography (1983) Vol. A, Th. Hahn, Ed., Dordrecht: Klewer Academic Publishers. [Revised editions: 1987,1989, 1993,1995]. Litvin, D.B. (1973) Acta Cryst. A29, 651-660. Litvin, D.B. (1997) Ferroelectrics, 204, 211-215. Litvin, D.B. (1998) Acta Cryst. A54, 257-261. Litvin, D.B. (2001) Acta Cryst. A54, 257-261. Litvin, D.B. (2001) Acta Cryst. A57, 729-730. Opechowski, W. (1986) Crystallographic and Metacrystallographic Groups, Amsterdam: North Holland. Opechowski, W. & Guccione, R. (1965) Magnetism, G.T. Rado & H. Suhl, Eds.,Vol. 2A, ch.3, New York: Academic Press. Shubnikov, A.V., Belov, N.V. & others (1964) Colored Symmetry, Oxford: Pergamon Dereos 	
Press. Zamorzaev, A.M. (1957) Kristallografiya 2, 15 (English transl., Sov. Phys. Cryst., 3, 401).	

Colored lattice types that cannot be setup with color group option in GSAS

Colored lattice types that can be setup with color group option in GSAS