

Bicolor Symmetry Groups

1929 Heesch, introduces the antiidentity operation properties: $u^{2}=1$, $u t=t u$ for all $t \in T$
aka time reversal group $=\left\{1,1^{\prime}\right\}$
1945 Shubnikov, re-introduces concept
1951 Shubnikov, describes and illustrates all of the bicolor point groups

1955 Belov et al., first complete listing of the bicolor space groups

1957 Zamorzaev, group theoretical derivation of bicolor space groups
1965 Opechowski and Guccione, first complete derivation and enumeration of the bicolor space groups
2001 Litvin, corrected Opechowski-Guccione symbols

Group definition and properties

A group ($G,{ }^{*}$) is a nonempty set G together with a binary operation * satisfying the group axioms below. " a * b " represents the result of applying the operation * to the ordered pair (a, b) of elements of G. The group axioms are the following:

Associativity: For all a, b and c in $G,\left(a^{*} b\right)^{*} c=a^{*}\left(b^{*} c\right)$.
Identity element: There is an element e in G such that for all a in $G, e^{*} a=a * e=a$. Inverse element: For all a in G, there is an element b in G such that $a * b=b * a=e$, where e is the identity element from the previous axiom.
You will often also see the axiom:
Closure: For all a and b in $G, a * b$ belongs to G
Example: Proper point group 4

$$
4=\left\{1,4,2,4^{-1}\right\}
$$

$\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Derivation of Antisymmetry Point Groups

If \mathbf{M} is an antisymmetry group, and 1 ' an antiidentity operation
Type I, M = G for some crystallographic point group G
Type II, M = G \cup G1' for some crystallographic point group G
Type III, $M=H \cup(G \mid H) 1$ ' for some crystallographic point group G , where H is a halving group of G .
example: $G=2 / m=\{1,2, i, m\}$

H	$2=\{1,2\}$	$\mathrm{m}=\{1, \mathrm{~m}\}$	$\overline{1}=\{1, i\}$
GIH	\{i,m\}	\{2,i\}	\{2,m\}
(GIH)1'	\{i', m'\}	\{2',i'\}	\{2', m'\}
$\mathrm{H} \cup(\mathrm{GH}) 1$	' $\{1,2, \mathrm{i}, \mathrm{m}$ '	\{1,2', $\left.{ }^{\prime}, \mathrm{m}\right\}$	\{1,2', $\left.{ }^{\prime}, \mathrm{m}^{\prime}\right\}$
	2/m'	2'/m	2'/m'

Example Magnetic Point Groups

Point group	nontrivial magnetic		point	groups	
1					
-1	-1'				
m	m'				
2	2'				
2/m	2'/m	2/m'	2'/m'		
222	2'2'2				
mm2	m'm2'	m'm'2			
mmm	m'mm	m'm'm	m'm'm'		
4	4'				
-4	-4'				
4/m	4'/m	4/m'	4'/m'		
422	4'22'	42'2'			
4 mm	4'm'm	4m'm'			
-42m	-4'2'm	-4'2m'	-42'm'		
4/mmm	4/m'mm	4'/mm'm	4'/m'm'm	4/mm'm'	4/m'm'm'
3					

	Point group	nontrivial	magnetic	point	groups	
	-6	-6'				
	32	32'				
	3m	3 m '				
	-6m2	-6'm'2	-6'm2'	-6m'2'		
	6	6 '				
	-3	-3'				
	6/m	6'/m	6/m'	6'/m'		
	622	6'2'2	62'2'			
	6 mm	6'm'm	6m'm'			
	-3m	-3'm	-3m'	-3'm'		
	6/mmm	6/m'mm	6'/mm'm	6'/m'm'm	6/mm'm'	6/m'm'm'
	23					
	m-3	m'-3				
	-43m	-4'3m'				
	432	4'32'				
	m-3m	m'-3m	m-3m'	m'-3m'		

Derivation of Antisymmetry Space Groups

If M is an antisymmetry group, and 1 ' an antiidentity operation

Type I, M = F for some crystallographic space group F 230 uncolored
Type II, M = F \cup F1' for some crystallographic space group F 230 grey
Type III, M = D $\cup($ FID $) 1$ ' for some crystallographic space
group F, where D is a subgroup of index two of F.
674 a. M_{T}, where D is an equi-translation subgroup of F
(D has the same lattice type as F and M)
517 b. M_{R}, where D is an equi-class subgroup of F
(M_{R} contains anti-translations and
is doubled with respect to F)
1651 Total

$$
\begin{aligned}
& \text { matrix representations of } \\
& \text { antisymmetry operations } \\
& 4 \times 4\left[\begin{array}{cccc}
\overline{1} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \overline{1} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & \overline{1}
\end{array}\right]\left[\begin{array}{cccc}
\overline{1} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \overline{1} & 0 \\
0 & 0 & 0 & \overline{1}
\end{array}\right] \\
& \text { [010]2 } \\
& \text { half-turn } \\
& \text { antiidentity } \\
& { }^{[010]}{ }^{2} \\
& \text { anti-half-turn } \\
& \text { Seitz } \\
& \text { notation } \\
& (2, \mid 0,0,0) \\
& (1 \mid 0,0,0) \\
& \left(2_{y} \mid 0,0,0\right) \text {) }
\end{aligned}
$$

Cosets

Let \mathbf{G} denote a group, H a subgroup of \mathbf{G} and $\mathrm{a} \in \mathbf{G}$. Then the right coset of H in G determined by a, denoted Ha , is

$$
H a=\{h a \mid h \in H\}
$$

The left coset of H in \mathbf{G} determined by a, denoted $a H$, is

$$
a H=\{a h \mid h \in H\}
$$

A subgroup H of a group G is said to be normal if $\mathbf{g H}=\mathbf{H g}$ for all $\mathrm{g} \in \mathrm{G}$, i.e., left and right cosets are the same.

Cosets

Example: Let $\mathrm{G}=4=\left\{1,4,2,4^{-1}\right\}, \mathrm{H}=2=\{1,2\}$. Find the right cosets 2 g and the left cosets g 2 for each $\mathrm{g} \in 4$.

$2^{*} 1=\{1,2\} 1=\{1,2\}$	$1^{*} 2=1\{1,2\}=\{1,2\}$
$2^{*} 4=\{1,2\} 4=\left\{4,4^{-1}\right\}$	$4^{*} 2=4\{1,2\}=\left\{4,4^{-1}\right\}$
$2^{\star} 2=\{1,2\} 2=\{2,1\}$	$2^{*} 2=2\{1,2\}=\{2,1\}$
$2^{*} 4^{-1}=\{1,2\} 4^{-1}=\left\{4^{-1}, 4\right\}$	$4^{-1 *} 2=\{1,2\} 4^{-1}=\left\{4^{-1}, 4\right\}$

Two unique cosets of 2 in 4.
The right and left cosets are the same, so 2 is a normal subgroup.

Derivation of Antisymmetry Space Groups

If M is an antisymmetry group, and 1 ' an antiidentity operation

Type I, M = F for some crystallographic space group F
Type II, M = F U F1' for some crystallographic space group F
Type III, M = D U (F\D)1' for some crystallographic space group F, where D is a subgroup of index two of F.
a. M_{T}, where D is an equi-translation subgroup of F (D has the same lattice type as F and M)
b. M_{R}, where D is an equi-class subgroup of F (M_{R} contains anti-translations and is doubled with respect to F)

Cosets

Of great interest is the coset decomposition of the space groups with respect to their translational subgroups.

Let $T=\left(I \mid t_{j}\right)$ be a translational group defining a lattice, and \mathbf{W} be an arbitrary symmetry operation (W|w) of space group G.

Then for all of the products $\left(\left|\mid t_{j}\right)(W \mid w)=\left(W \mid w+t_{j}\right)\right.$, for every j the matrix part \mathbf{W} is the same.

Thus, $T \mathrm{~W}$ denotes the right coset decomposition of T in \mathbf{G}. The left cosets WT are the same, so translational subgroups are normal subgroups.

The decomposition of the space groups into cosets is the basis of description of the space groups in the International Tables.

```
Magnetic Space Group
Type Illa, \(\mathrm{M}_{\mathrm{T}}\), Example P2'/m (No. 11.3.61)
\(F=P 2 / m=T(1 \mid 0,0,0)+T\left(2_{y} \mid 0,0,0\right)+T\left(m_{y} \mid 0,0,0\right)+T(i \mid 0,0,0)\)
\(D=P m=T(1 \mid 0,0,0)+T\left(m_{y} \mid 0,0,0\right)\)
\(M_{T}=D+(F \backslash D) 1^{\prime}\)
\((F \mid D)=T\left(2_{y} \mid 0,0,0\right)+T(i \mid 0,0,0)\)
\((F \backslash D) 1^{\prime}=T\left(2_{y} \mid 0,0,0\right)^{\prime}+T(i \mid 0,0,0)^{\prime}\)
\(M_{T}=T(1 \mid 0,0,0)+T\left(m_{y} \mid 0,0,0\right)+T\left(2_{y} \mid 0,0,0\right)^{\prime}+T(i \mid 0,0,0)^{\prime}\)
```

MAGNETIC SPACE GROUP LATTICES triclinic system

$$
P_{2 s}=P_{a, b, 2 c}
$$

$$
\mathrm{T}_{\alpha}=\mathrm{c}=(0,0,1)
$$

anti-translations join open and full circles regular translations join open-open and full-full circles
$\mathrm{T}_{\alpha}=$ anti-translation
Taken from Litvin (2001) after Opechowski \& Guccione (1965)


```
Magnetic Space Group
Type Illb, M M, Example P2bc'a'2 (No. 29.7.204)
```



```
P2b
    O, "
    t
```



```
If it is primed in the Opechowski-Guccione symbol then
it appears in D coupled with t}\mp@subsup{\textrm{t}}{\alpha}{}\mathrm{ , and primed in (FID)1'.
If it is unprimed in the Opechowski-Guccione symbol then
it appears unchanged in D, and coupled with }\mp@subsup{\textrm{t}}{\alpha}{}\mathrm{ and primed in
(FID)1'.
M
+T
```


74.4.653	Imma'	$/ \mathrm{Imm2}$	(0, 14, 0 ;a, b, c $)$	${ }_{(110,0,0)}^{(110,0)}$	$\begin{aligned} & \left(2_{2} \mid 0,0,0,0\right)^{\prime} \\ & \left(\mathrm{m}_{1} 0,0,0,\right. \end{aligned}$	$\begin{aligned} & \left(2_{2}, 0,1,1,0,0\right)^{\prime} \\ & \left(m_{y}, 0,12,0\right) \end{aligned}$	$(2, \mid 0,12,0)$ ($\left.m_{2} \mid 0,1 / 2,0\right)^{\prime}$
74.5.654	Im'm'a	C2/c	(0,0,0;a+b, c, b ${ }^{\text {b }}$	(11000) (110) group	120001 type of th	$e^{12(0,12,0)^{\prime}} \begin{aligned} & (0,12,0)^{\prime} \end{aligned}$	$\begin{aligned} & \binom{2}{\left(m_{2} \mid 0,12,12,0,12,0\right)} \end{aligned}$
74.6.655	Imm'a'	C2/m	(0,0,0;a+b, ${ }^{\text {a }}$, c)	$\underset{\binom{(1\|0\| 0}{(T \mid 0}}{\substack{\text { sub } \\ \text { inde }}}$	roup D of two of F	$\begin{aligned} & 0,12,0)^{\prime \prime} \\ & (0,112,0)^{\prime} \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 0,12,12,0\right)^{\prime \prime} \\ & \left(m_{1}, 0,1 / 2,2\right)^{\prime} \end{aligned}$
74.7.656	Im'm'a'	12, 2, 2,	${ }_{(0,0,14 ; a, \mathrm{~b}, \mathrm{c})}$	$\begin{aligned} & (1 \mid 0,0,0) \\ & (1 \mid 0,0,0)^{\prime} \end{aligned}$	$\begin{aligned} & \left.\left(2_{1}, 0,0,0\right), 0\right)^{\prime} \\ & \left(m_{1} 0,0,0,\right. \end{aligned}$	$\begin{gathered} (2,\|,\|, 12,0,0) \\ \left(m_{1}, 0,112,0\right)^{\prime} \end{gathered}$	$\begin{aligned} & \left(2_{2} \mid 0,12,0\right) \\ & \left(m_{2} \mid 0,1 / 2,0,\right)^{\prime} \end{aligned}$
74.8.657	bmma	Pmma	(0,0,0;b, $\overline{\mathbf{a}, \mathrm{c}}$)	$\begin{aligned} & (1 \mid 0,0,0) \\ & (\overline{1} \mid 0,0,0) \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 0,0,0\right) \\ & \left(m_{k} \mid 0,0,0\right) \end{aligned}$	$\begin{aligned} & (2, \mid 0,12,0) \\ & \left(\mathrm{m}_{1}, 0,112,0\right) \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 0,12,0\right) \\ & \left(m_{2} \mid 0,1 / 12,0\right) \end{aligned}$
74.9.658	bem'ma	Pmna	(0,0,0;b, $\overline{\mathbf{a}, \mathrm{c}}$)	$\begin{aligned} & \binom{(1 \mid 0,0,0)}{(1 \mid 0,0,0,0)} \end{aligned}$	$\left(2_{k} \mid 1 / 2,1 / 2,1 / 2\right)$ ($\left.m_{x} \mid 1 / 2,1 / 2,12\right)$	$\begin{gathered} (2,112,0,12) \\ (m, 112,0,12) \end{gathered}$	$\begin{aligned} & \binom{2}{\left(m_{2} \mid 0,12,12,0\right)} \end{aligned}$
74.10.659	bmm'a'	Pmna	(0,0,0;a, b, c)	$\begin{aligned} & \binom{(1 \mid 0,0,0)}{(1 \mid 0,0,0,0)} \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 0,0,0\right) \\ & \left(m_{l} 0,0,0\right) \end{aligned}$	(2,\|12, 0,12) ($m_{\mid} \mid 1 / 2,0,1 / 2$)	$\left(2_{2} \mid 112,0,112\right)$ $\left(m_{2} \mid 112,0,1 / 12\right)$
74.11.660	brm'ma'	Pnma	(0,0,0;a,b,c)	$\begin{aligned} & (1 \mid 0,0,0) \\ & (1 \mid 0,0,0) \end{aligned}$	(2\| $\mid 1 / 2,1 / 2,1 / 2)$ $\left(m_{x} \mid 1 / 2,1 / 2,12\right)$	$\begin{aligned} & (2,0,12,0) \\ & \left(m_{1}, 0,112,0\right) \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 12,0,1 / 2\right) \\ & \left(m_{2} \mid 112,0,1 / 2\right) \end{aligned}$
tetragonal system							
75.1.661	P4			(1) $0,0,0$)	(42\|0,0,0)	$\left(22_{1} \mid 0,0,0\right)$	$\left(42^{4} \mid 0,0,0\right)$
75.2.662	P41'						
75.3.663	P4	P2	(0,0,0;b, c,a)	(1\|0,0,0)	(4, $10,0,0)^{\prime}$	(2 $210,0,0)$	($\left.4 i^{-1} 10,0,0\right)^{\prime}$
75.4.664	$\mathrm{P}_{24}{ }^{4}$	P4	(0,0,0;a, , , 2c)	(1\|0,0,0)	(4) $\left.{ }_{2} \mid 0,0,0\right)$	(2 $210,0,0)$	$\left(4_{2}{ }^{1} \mid 0,0,0\right)$

83.5.707	P4/m'	P4	0,0;a,b,c)	$\begin{aligned} & (1 \mid 0,0,0) \\ & (\bar{\top} \mid 0,0,0)^{\prime} \end{aligned}$	$\begin{aligned} & \left(4_{2}[0,0,0,0)\right. \\ & \left(4_{2}=0,0,0\right) \end{aligned}$	$\begin{aligned} & \binom{2}{\left(m_{2} \mid 0,0,0,0,0\right)} \end{aligned}$	
83.6.708	$\mathrm{P}_{24} 4 / \mathrm{m}$	P4/m	(0,0,0;a,b,2c)	$\begin{aligned} & (1 \mid 0,0,0) \\ & (1 \mid 0,0,0) \end{aligned}$		$\begin{aligned} & (2 \mid 0,0,0) \\ & \left(m_{2} \mid 0,0,0,0\right. \end{aligned}$	$\begin{aligned} & \left(44_{4}^{1} \mid 0,0,0,0\right) \\ & \left(4_{2}^{2} \mid 10,0,0\right) \end{aligned}$
83.7.709	P.A/m	P4/m	(0,0,0;ab,a+b,c)				$\begin{aligned} & \left(4_{4}^{1} \mid 1,0,0,0\right) \\ & \left.4_{2}^{4} \mid 10,0,0\right) \end{aligned}$
83.8.710	P.4/m	P4/m	(0,0,0;a-b,a+b,2c)				$\begin{aligned} & \left(4_{2}^{2} \mid 1,0,0,0\right) \\ & \left(4_{2}^{2} \mid 10,0,0,0\right) \end{aligned}$
83.9 .711	$\mathrm{P}_{24} 4^{\prime \prime} / \mathrm{m}$	P4/m	(0,0,0;a, , , 2c)	$\begin{aligned} & \begin{array}{l} (1 \mid 0,0,0) \\ (1 \mid 0,0,0) \end{array} \end{aligned}$	$\begin{aligned} & \left(4_{2} \mid 0,0,1\right) \\ & \left(4_{2} \mid 0,0,1\right) \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 0,0,0\right) \\ & \left(m_{2} \mid 0,0,0\right) \end{aligned}$	$\begin{aligned} & \left(4_{2}^{1}+1,0,0,1\right) \\ & \left(4_{2}^{2} \mid 10,0,1\right) \end{aligned}$
83.10.712	$\mathrm{P}_{\mathrm{p}} / \mathrm{/m} \mathrm{~m}^{\prime}$	P4/n	(12, 12, $;$;ab,aba, ${ }^{\text {a }}$	$\begin{gathered} (1 \mid 10,0,0) \\ (1 \mid 1,0,0) \end{gathered}$	$\begin{aligned} & (4) \\ & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 0,0,0\right) \\ & \left(m_{2} \mid 1,0,0\right) \end{aligned}$	$\begin{aligned} & \left(4_{2}^{1}+1,0,0,0\right) \\ & \left(4_{2}^{2} \mid 1,1,0,0\right) \end{aligned}$
84.1.713	P4/m			$\begin{aligned} & (1 \mid 0,0,0,0) \\ & (T \mid 0,0,0) \end{aligned}$	$\begin{aligned} & \left(4_{z} \mid 0,0,1 / 2\right) \\ & \left(4_{z} \mid 0,0,112\right) \end{aligned}$	$\begin{aligned} & \left.2_{2} \mid, 0,0,0\right) \\ & \left.m_{2} \mid 0,0,0\right) \end{aligned}$	$\begin{aligned} & \left(4_{1}^{1} 1 \mid, 0,0,12\right) \\ & \left.4_{2}^{2} \mid 0,0,12\right) \end{aligned}$
84.2.714	P4/m1'						
84.3.715	$\mathrm{P}_{2}{ }^{\prime} / \mathrm{m}$	P2/m	(0,0,0; ; , c,a)	$\begin{aligned} & (1 \mid 0,0,0) \\ & (T \mid 0,0,0) \end{aligned}$	$\begin{aligned} & \left(4_{4} \mid 0,0,1 / 2\right)^{\prime} \\ & \left(4_{2} \mid 0,0,112\right)^{\prime} \end{aligned}$	$\begin{aligned} & (2 \mid 0,0,0,0 \\ & \left(m_{2} \mid 0,0,0,0\right. \end{aligned}$	$\begin{aligned} & \left(4^{-1} \mid=0,0,0,1 / 2\right)^{\prime} \\ & \left(4_{2}{ }^{+1} \mid 0,0,0,12\right)^{\prime} \end{aligned}$
84.4.716	$\mathrm{P} 4 / \mathrm{m}^{\prime}$	P_{2}	(0,0,0;a,b,c)	$\begin{aligned} & (1 \mid 0,0,0) \\ & (1 \mid 0,0,0)^{\prime} \end{aligned}$	$\begin{aligned} & \left(4_{4} \mid 0,0,1 / 2\right) \\ & \left(4_{2} \mid 0,0,1 / 2\right)^{\prime} \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 0,0,0\right) \\ & \left(m_{2} \mid 0,0,0,0\right) \end{aligned}$	
84.5.717	P4 $2^{\prime} / \mathrm{m}^{\prime}$	P4	, 14; a ,	$\left(\begin{array}{l} (1 \mid 0,0,0,0) \\ (1 \mid 0,0,0)^{\prime} \end{array}\right.$	$\begin{aligned} & \left(4_{2}[0,0,1,1,2)^{\prime \prime}\right. \\ & 4_{2}(0,0,0,12) \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 0,0,0\right) 0_{1} \\ & \left(m_{2} \mid 0,0,0,0\right) \end{aligned}$	$\begin{aligned} & \left(4_{4}^{4}\left\|{ }^{-1}\right\| 0,0,1 / 2\right)^{\prime} \\ & \left(4_{2}^{-1} \mid 0,0,12\right) \end{aligned}$

29.5.202	P'a'a'2.	P2,	(0,0,0;b, , , a)	(110,0,0)	(m, 112, $0,1 / 2)^{\prime}$	(m, \|112, 0,0$)^{\prime}$	${ }^{(2,00,0,12)}$
${ }^{29.6 .203}$ 29.7.204	$\begin{gathered} \mathrm{P}_{2 x} \mathrm{R}_{2} \text { Recognizing the different space group types, } \\ \text { Type I, uncolored space groups } \end{gathered}$						$\begin{aligned} & \left(2_{2} \mid 0,0,1 / 12\right) \\ & \left(2_{2} \mid 0,0,1 / 2\right) \end{aligned}$
30.1.205	Pnc2			(1\|0,0,0)	$\left(m_{*} \mid 0,12,112\right)$	($\left.m_{y} \mid 0,112,112\right)$	(2, $0,0,0)$
30.2.206	Pnc21						
30.3.207	Pr'c2'	Pc	$(0,14,0 ; \mathrm{a}, \mathrm{b}, \mathrm{c})$$(0,0,0 ; c, \mathrm{a}, \mathrm{b} \mathrm{c})$$\quad$First entry for each family in blue is the regular uncolored space group				
30.4.208	Pnc ${ }^{\prime}$	Pc					
30.5.209	Pn'c'2	P2	(0,0,0;b, c, a $)^{\text {a }}$	${ }^{(1 \mid 0,0,0)}$	($\left.m_{x} \mid 0,1 / 2,1 / 2\right)^{\prime}$	($\left.\mathrm{m}_{3} \mid 0,12,12\right)^{\prime}$	$\left(2_{2} \mid 0,0,0\right)$
30.6.210	$\mathrm{P}_{2 \mathrm{~s}} \mathrm{nc} 2$	Pnc2	,0;2a,b,c	${ }_{(110,0,0)}$	$\left(m_{*} \mid 0,1 / 2,1 / 2\right)$	($\left.m_{y} \mid 0,12,112\right)$	$\left(2_{2}[0,0,0)\right.$
30.7.211	$\mathrm{P}_{2 \mathrm{l}} \mathrm{nc}^{\prime} \mathrm{I}^{\prime}$	Pnn2	(12, 0, 0 ; 2a,b,	${ }^{(1 \mid 0,0,0)}$	$\left(m_{*} \mid 0,112,1 / 2\right)$	$\left(m_{y} \mid 11^{1 / 2} 1 / 2\right)$	$\left(2_{2} \mid 1,0,0\right)$
31.1.212	Pmn2,			(1\|0,0,0)	$\left(m_{x} \mid 0,0,0\right)$	($\left.m_{y} \mid 112,0,112\right)$	$\left(2_{2} \mid 112,0,112\right)$
31.2.213	Pmn2,1'						
31.3.214	Pm'n2;	Pc	(0,0,0;a, , , a acc)	${ }^{(110,0,0)}$	$\left(m_{x} \mid 0,0,0\right)$	($\left.m_{1} \mid 112,0,112\right)$	$\left(2_{2} \mid 112,0,112\right)^{\prime}$
31.4.215	Pmn'2,	Pm	(0,0,0;b, $\overline{\text { a, c }}$)	${ }^{(1 \mid 0,0,0)}$	$\left(m_{x} \mid 0,0,0\right)$	($\left.m_{1} \mid 112,0,0,12\right)^{\prime}$	$\left(2_{2} \mid 12,0,1 / 2\right)^{\prime}$
31.5 .216	Pm'n'2,	P2,	(14, $, 0,0 ; \mathrm{b}, \mathrm{c}, \mathrm{a})$	${ }^{(110,0,0)}$	($\left.m_{x} \mid 0,0,0\right)^{\prime}$	(my ${ }^{1 / 2,0,0,12)^{\prime}}$	$(2,112,0,112)$
31.6 .217	$\mathrm{P}_{20} \mathrm{mn} 2_{1}$	2 Pmn2,	(0,0,0;a,2b, c)	$(1 \mid 0,0,0)$	$\left(m_{x} \mid 0,0,0\right)$	($\left.m_{l} \mid 112,0,112\right)$	$\left(2_{2} \mid 12,0,112\right)$

86.4.730	$\mathrm{P} 4 / \mathrm{I}^{\prime}$	P_{2}	($12,0,0 ; a, \mathrm{a}, \mathrm{c}$)	$\begin{aligned} & (1 \mid 0,0,0) \\ & (\overline{1} \mid 12,1 / 2,12)^{\prime} \end{aligned}$	$\begin{aligned} & \left(4_{2} \mid 1,12,1,1,12\right) \\ & \left.4_{2} \mid 0,0,0,0\right)^{\prime} \end{aligned}$	($2, \mid 0,0,0$) $\left(m_{2} \mid 1 / 2,12,1 / 2\right)$	
86.5.731	P4 ${ }_{2} / 1 /{ }^{\prime}$	P4	(0,0,0;a,b,c)	$\frac{(1 \mid 10,0,0)}{(1 \mid 121,12,12)^{\prime}}$	$\begin{aligned} & \left(4_{2} \mid 12,12,1,12\right)^{\prime \prime} \\ & \left(4_{2} \mid 0,0,0,0\right) \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 0,0,0,0\right) \\ & \left.\left(m_{2} \mid 12,12,12\right)^{\prime}\right) \end{aligned}$	$\begin{aligned} & \left(4_{1}^{-1} \mid 1(2,1,1,1,1)^{2}\right. \\ & \left(4_{2}{ }^{1} \mid 0,0,0,0,\right. \end{aligned}$
86.6 .732	P. $4 / 2 / n$	14,a	(0,0,0;ab-b,atb, 2 c)	$\begin{aligned} & (1 \mid 0,0,0) \\ & (7 \mid 12,12,12) \end{aligned}$	$\begin{aligned} & \left(4_{2} \mid 1,12,12,12\right) \\ & \left.4_{2} \mid 0,0,0,0\right) \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 0,0,0\right), 0,1 \\ & \left(m_{2} \mid 12,12,12\right) \end{aligned}$	$\begin{aligned} & \left(4_{2}^{1-1} \mid 1 / 2,1 / 1 / 1 / 2\right) \\ & \left(4_{2}^{4} \mid 0,0,0,0\right) \end{aligned}$
87.1.733	14/m			$\begin{aligned} & (1 \mid 0,0,0) \\ & (\bar{T} \mid 0,0,0) \end{aligned}$	$\begin{aligned} & \left(4_{z} \mid 0,0,0\right) \\ & \left(4_{z} \mid 0,0,0,0\right) \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 0,0,0\right) \\ & \left(m_{2} \mid 0,0,0\right) \end{aligned}$	$\begin{aligned} & \left(4_{2}^{1}+1,0,0,0\right) \\ & \left(4_{2}^{2} \mid 0,0,0\right) \end{aligned}$
87.2.734	$14 / \mathrm{m} 1^{1}$						
87.3.735	$14 \% m$	c2/m	(0,0,0;a+b, cas)	$\begin{aligned} & (1 \mid 10,0,0) \\ & (T \mid 0,0,0,0) \end{aligned}$	$\begin{aligned} & \left(4_{2} \mid 0,0,0,0\right)^{\prime} \\ & \left.4_{2}=0,0,0,\right)^{\prime} \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 0,0,0\right) \\ & \left(m_{2} \mid 0,0,0\right) \end{aligned}$	$\begin{aligned} & \left(4_{1}^{4}-1,0,0,0\right)^{\prime} \\ & \left.4_{1}^{2} \mid 0,0,0,0\right)^{\prime} \end{aligned}$
87. Coset representatives				$\begin{aligned} & (1 \mid 0,0,0) \\ & (1 \mid 0,0,0))^{\prime} \end{aligned}$	$\begin{aligned} & \left(4_{2}[0,0,0,0)\right. \\ & 4_{2}^{2}[0,0,0) \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 0,0,0\right) \\ & \left(m_{2} \mid 0,0,0,0\right) \end{aligned}$	$\begin{aligned} & \left(4_{2}^{1}+1,0,0,0\right) \\ & \left(4_{2}^{2} \mid 0,0,0,0\right) \end{aligned}$
87. of the de		mpo tic s	ion of e		$\begin{aligned} & \left(4_{2} \mid 0,0,0,0\right)^{\left(4_{2} \mid 0,0,0,0\right)} \end{aligned}$	$\begin{aligned} & \left(2_{2} \mid 0,0,0,0\right) \\ & \left(m_{2} \mid 0,0,0\right)^{\prime} \end{aligned}$	$\left.\begin{array}{l} \left(4_{4}^{4^{1}} \mid=0,0,0\right)^{\prime} \\ \left(4_{2}^{2}=10,0,0\right) \end{array}\right]$
87.	the magn		t to its	$\begin{aligned} & (1 \mid 0,0,0) \\ & (1 \mid 0,0,0) \end{aligned}$	$\begin{aligned} & \left(4_{2} \mid 0,0,0\right) \\ & 4,20,0,0) \end{aligned}$	$\begin{aligned} & \left(\begin{array}{l} 2 \\ \left(m_{2}, 0,0,0\right) \\ \left(m_{2} \mid 0,0,0\right) \end{array}\right. \end{aligned}$	$\begin{aligned} & \left(4_{2}^{4}+1,0,0,0\right) \\ & \left.4_{2}^{2} \mid 10,0,0\right) \end{aligned}$
87. tra	at		oup.	$\begin{aligned} & (10,0,0,0) \\ & \left(\begin{array}{l\|l\|l} 10,0,0, \end{array}\right) \end{aligned}$	$\begin{aligned} & \left(4_{2} \mid 12,12,11 / 2\right) \\ & \left(4_{2} \mid 12,112,1 / 2\right) \end{aligned}$	$\begin{aligned} & \binom{2}{\left(m_{2} \mid 0,0,0,0,0\right)} \end{aligned}$	$\begin{aligned} & \left(4_{2}^{-1} \mid 1 / 1,1,1 / 2,1 / 2\right) \\ & \left(4_{3}, 3 \mid 112,1 / 2,1 / 2\right) \end{aligned}$
87.8.740	1,4/m'	P4/n	(12,0, $14 ; \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{c}$)	$\begin{aligned} & (1 \mid 0,0,0,0) \\ & (1 \mid 12,12,+12) \end{aligned}$	$\begin{aligned} & \left(4_{2} \mid 0,0,0,0\right) \\ & \left(4_{2}^{2} \mid 12,12,1 / 2\right) \end{aligned}$	(2 \| $0,0,0$) $\left(m_{2} \mid 1 / 2,1 / 2,12\right)$	

Typos in Opechowski \& Guccione (1965) corrected by Opechowski (1986), given in Litvin (2001)		
Numbering In Table 1	 Guccione (1965)	Opechowski (1986)
16.4.102	$\mathrm{P}_{25} 222$	$\mathrm{P}_{2 \mathrm{a}} 222$
43.4.323	Fdd'2	Fd'd'2
47.6.352	$\mathrm{P}_{25} \mathrm{mmm}$	$\mathrm{P}_{2 \mathrm{a}} \mathrm{mmm}$
67.17 .593	C, m'm'a'	$\mathrm{C}_{1} \mathrm{~m}$ 'ma'
108.8.899	$14^{\prime} \mathrm{cm} '$	$1{ }_{\text {P }} 4$ 'cm'
108.9.900	$14 c^{\prime} m$ '	$1{ }_{\text {P }} 4 \mathrm{c}^{\prime} \mathrm{m}$ '
124.1.1018	P4/mcr	P4/mcc
132.4.1113	$\mathrm{P} 4_{2} / \mathrm{mcm}$	$\mathrm{P} 4_{2} / / \mathrm{mcm}$

Other changes to Opechowski-Guccione symbols given by
 Litvin (2001)

In both Opechowski \& Guccione (1965) Opechowski (1986) the symbol $P_{2 b}$ c'ca is listed twice, in the numbering of Table 1, at entries 54.11.438 and 54.13.440. The second has been changed to $\mathrm{P}_{2 \mathrm{~b}} \mathrm{c}^{\prime}$ ca', a magnetic group which has a nonmagnetic subgroup of the type Pnna.

Numbering In Table 1	Opechowski \& Guccione (1965) Opechowski (1986)	Table 1 Litvin (2001)
131.13.1109	$P_{P} 4_{2} / \mathrm{m}^{\prime} \mathrm{mc}$	$\mathrm{P}_{\mathrm{P}} 4_{2} / \mathrm{m}^{\prime} \mathrm{mc}^{\prime}$
177.7.1385	$\mathrm{P}_{2 \mathrm{c}} 6$ '22	$P_{2 c} 6{ }^{\prime} 22 '$
180.7.1402	$\mathrm{P}_{2 \mathrm{c}} \mathrm{6}_{2}{ }^{\prime} 22$	$\mathrm{P}_{2 \mathrm{c}} \mathrm{\sigma}_{2}{ }^{2} 2{ }^{\prime}$

References

Belov, N.V., Neronova, N.N, \& Smirnova, T.S. (1957). Sov. Phys. Crystallogr. 1, 487-488. see also (1955) Trudy Inst. Krist. Acad. SSSR 11 33-67 (in Russian) Boisen, M.B. Jr. (1977) The adjunction of antiidentity operations to point groups, including a derivation of the magnetic point groups. Z. Krist. 145, S. 197-215.
Heesch, H. (1929) Z. Krist. 71, 95.
International Tables for X-ray Crystallography (1952) Vol. 1, N.F.M. Henry \& K Lonsdale, Eds., Birmingham: Kynock Press.
International Tables for Crystallography (1983) Vol. A,Th. Hahn, Ed., Dordrecht Klewer Academic Publishers. [Revised editions: 1987,1989, 1993,1995].
Litvin, D.B. (1973) Acta Cryst. A29, 651-660
Litvin, D.B. and Opechowski, W. (1974) Spin Groups. Physica 76, 538-554. Litvin, D.B. (1997) Ferroelectrics, 204, 211-215.
Litvin, D.B. (1998) Acta Cryst. A54, 257-261.
Litvin, D.B. (2001) Acta Cryst. A57, 729-730.
Opechowski, W. (1986) Crystallographic and Metacrystallographic Groups Amsterdam: North Holland
Opechowski, W. \& Guccione, R. (1965) Magnetism, G.T. Rado \& H. Suhl, Eds., Vol. 2A, ch.3, New York: Academic Press.
Shubnikov, A.V., Belov, N.V. \& others (1964) Colored Symmetry, Oxford: Pergamon Press.
Zamorzaev, A.M. (1957) Kristallografiya 2, 15 (English transl., Sov. Phys. Cryst., 3, 401).

Colored lattice types that cannot be setup with color group option in GSAS

```
\(\begin{array}{ll}\text { Triclinic: } & P_{2 s} \\ \text { Monoclinic: } & P_{2 a}, P_{2 b}, P_{2 c}, P_{C}, C_{2 c}\end{array}\)
Orthorhombic: \(P_{2 a}, P_{2 b}, P_{2 c}, P_{C}, P_{F}, P_{A}, A_{2 a}, A_{b}, C_{2 c}, C\)
Tetragonal: \(\quad \mathbf{P}_{2 c}, P_{c}, P_{1}\)
Trigonal: \(\quad \mathbf{R}_{\mathrm{R}}\)
Hexagonal: \(\quad \mathbf{P}\)
Cubic:
```

Colored lattice types that can be setup with color group option in GSAS

```
Monoclinic: \(\quad C_{P}\)
Orthorhombic: \(A_{P}, C_{P}, F_{C}, F_{A}, I_{P}\)
Tetragonal:
Cubic:
```

