Oct.02, 2009, Talk at Argonne lab

Status and Development of Heavy Ion Research Facility at IMP

Hongwei Zhao (zhaohw@impcas.ac.cn)

Institute of Modern Physics (IMP)

Chinese Academy of Science (CAS) Lanzhou, China

Chinese Academy of Sciences

- More than 90 institutes and scientific centers for basic science research and applied science research.
- More than 40000 staff
- Budget per year more than 3 Bil. USD
- Most of large-scale scientific facilities in China are located in CAS.

Outline

Brief Introduction of IMP

HIRFL Accelerator Complex

Research and Physics Program

Near-future Development

IMP is located in Lanzhou city

Lanzhou, the only city that the Yellow River goes through, is the capital of Gansu province, covers an area of 13.086 square kilometers and has a population of 2.83million (1.48 million in the city zone). The 2,000-year-old town once functioned as a garrison of strategic importance on the Silk Road.

IMP Basic Information

- IMP was founded in 1957 in Lanzhou and affiliated with Chinese Academy of Sciences.
- The biggest nuclear physics research center in China
- 653 permanent staff, 230 PHD and master Students.
- Total budget a year: 150~200 M C¥ (25~30 M\$)
- National lab of Heavy Ion Research Facility (HIRFL)

FY Budget for IMP and NLHIRFL

Chinese Academy of Sciences
Ministry of Science and Technology
National Development and Reform Commission
Ministry of Finance
National Natural Science Foundation of China
Local government

Management Structure of IMP

HIRFL Accelerator Complex and Development

HIRFL Layout

- ECR Ion Source
- SFC K=69--10AMev
- SSC K=450 –100AMev

 CSRm: Synchrotron Intensity: 10⁸⁻⁹ pps , Circumference: 162 m
 CSRe: Storage ring

> Accel. & Deccel. Intensity: ¹⁰⁸⁻¹⁰ pps Circumference: 128 m RIB, internal target High Resolution Spectrometer

• CSR budget:42 M\$; 2000-2007

HIRFL Cyclotrons

K_{SSC} = 450 E:10-100MeV/u 10¹⁰ ~10¹¹pps(C—Bi)

K_{SFC} ~ 69 E: 0.2-10MeV/u 10¹² ~10¹³pps (C—U)

Typical beams provided by **SFC and SSC** in recent years

	E (MeV/A)		Beam
Ion Beams	SFC	SSC	Intensity (eµA)
¹²⁹ Xe ²⁷⁺	3.0	/	6.0-7.0
²⁰⁸ Pb ²⁷⁺	1.1	1	0.8-1.0
⁴⁰ Ca ¹²⁺	5.8	/	1.0
²⁰ Ne ⁷⁺	7.2	1	10-12
¹² C ⁴⁺	7.0	1	10-15
²⁶ Mg ⁸⁺	6.54	1	2.0
¹⁶ O ⁶⁺	7.99	/	7-12
⁴⁰ Ar ⁸⁺	2.35	/	8-15
⁷⁸ Kr ¹⁹⁺	4.0		7-9
238U26+	0.81	/	0.33
		00 F	0005
¹² C ^{4+/6+}	7.0	80.5	0.2-0.5
¹² C 4+/6+ 12C 5+/6+	7.0 8.2	80.5 100	0.2-0.5
12 C 4+/6+ 12 C 5+/6+ 32 S 11+/16+	7.0 8.2 7.1	80.5 100 82	0.2-0.5 0.2-0.3 0.2-0.3
12C 4+/6+ 12C 5+/6+ 32S11+/16+ 26Mg ^{8+/12+}	7.0 8.2 7.1 6.17	80.5 100 82 70	0.2-0.5 0.2-0.3 0.2-0.3 0.3-0.4
12C 4+/6+ 12C 5+/6+ 32S11+/16+ 26Mg ^{8+/12+} 40Ar ^{12+/17+}	7.0 8.2 7.1 6.17 7.1	80.5 100 82 70 82	0.2-0.3 0.2-0.3 0.2-0.3 0.3-0.4 0.1-0.3
12C 4+/6+ 12C 5+/6+ 32S11+/16+ 26Mg ^{8+/12+} 40Ar ^{12+/17+} 209Bj ³¹⁺	7.0 8.2 7.1 6.17 7.1 0.88	80.5 100 82 70 82 82 9.8	0.2-0.3 0.2-0.3 0.2-0.3 0.3-0.4 0.1-0.3 0.08
12C 4+/6+ 12C 5+/6+ 32S11+/16+ 26Mg ^{8+/12+} 40Ar ^{12+/17+} 209Bj ³¹⁺ 22Ne ^{7+/10+}	7.0 8.2 7.1 6.17 7.1 0.88 6.17	80.5 100 82 70 82 9.8 70	0.2-0.5 0.2-0.3 0.2-0.3 0.3-0.4 0.1-0.3 0.08 0.2-0.5
12C 4+/6+ 12C 5+/6+ 32S11+/16+ 26Mg ^{8+/12+} 40Ar ^{12+/17+} 209Bj ³¹⁺ 22Ne ^{7+/10+} 58Nj ^{13+/22+}	7.0 8.2 7.1 6.17 7.1 0.88 6.17 4.5	80.5 100 82 70 82 9.8 70 50	0.2-0.3 0.2-0.3 0.2-0.3 0.3-0.4 0.1-0.3 0.08 0.2-0.5 0.1-0.2
12C 4+/6+ 12C 5+/6+ 32S11+/16+ 26Mg ^{8+/12+} 40Ar ^{12+/17+} 209Bj ³¹⁺ 22Ne ^{7+/10+} 58Ni ^{13+/22+} 129Xe ²⁷⁺	7.0 8.2 7.1 6.17 7.1 0.88 6.17 4.5 1.8	80.5 100 82 70 82 9.8 70 50 19.5	0.2-0.3 0.2-0.3 0.2-0.3 0.3-0.4 0.1-0.3 0.08 0.2-0.5 0.1-0.2 0.6-0.75

HIRFL Operation in 2008-2009

HIRFL operation time distribution in Sept.2008-July 2009

Operation time distribution	Time (hours)	Percentage
Total operation time	6922	100%
Beam time	5218	75.4%
Preparation of beams	931	13.4%
Failure of equipments	773	11.2%

HIRFL beam time distribution in 2008-2009

Beam time distribution	Time (hours)	Percentage
Total beam time	5218	100%
Nuclear physics, material science	2730	53.2%
Biophysics and therapy research	1205	23.1%
Machine study and improvement	1283	23.7%

5218 hours beam time: 50.5% beam delivered by CSR, the others by SFC or SSC

Ar⁹⁺ 320μA, Ar¹¹⁺80μA Kr¹⁵⁺100μA,Kr¹⁷⁺70 μA

IMP 10GHz LECR1 Bz 1.0T, Br 0.7T 1990-1995-1996

ин в са Source Development 07+ 140µА, Ar¹¹⁺ 185µА Кr¹⁹⁺50µА, Xe²⁶⁺50 µА Ca¹¹⁺130 µА, Fe¹³⁺65 µА Zn¹³⁺50 µА, Pb³⁰⁺ 8 µА

IMP 14.5-18 GHz LECR2,3 Bz 1.5-1.7T, Br 1.0T 1999, 2001 Kr²⁷⁺, Xe³³⁺, Au³⁵⁺, U⁴¹⁺ 50-100 μA

IMP SECRL (18-28 GHz) Bz 3.7 , Br 2.0T 2002-2007

O⁷⁺ 300μA, Ar¹¹⁺ 325μA Ar⁸⁺ 1.1 mA, Xe ²⁶⁺ 95 μA Fe ¹³⁺ 141 μA, Ar¹⁷⁺ 0.6 uA Pb ⁴⁰⁺ 0.2 μA, U³²⁺ 8 μA

Fully Superconducting ECR Ion Source

 $n_{e} \sim \omega_{rf}^{2} ; I \sim \omega_{rf}^{2} ; B_{ecr} = \omega_{rf} m/q$ $B_{inj} \sim 3-4 B_{ecr}; B_{rad} > 2 B_{ecr}$

SERSE in Catania (14.5-28 GHz)

Conventional Structure

VENUS in Berkeley (18-28 GHz)

Advantage: Higher sextuple field; Larger plasma chamber;

Disadvantage:

Very strong interaction forces;
Much longer sextupole and bigger source body

MS-ECRIS, RIKEN SC-ECR, SuSi...

SECRAL Magnet Concept and Superconducting Coil Configuration

SECRAL at the Axial Injection Beam Line of IMP Cyclotron (since2007.05)

24GHz+18GHz

SECRAL performance in production of highly charged heavy ions demonstrates ECRIS optimized design plays more important role besides frequency scaling and rf power effects

Хе	SECRAL	VENUS
	18GHz or	28GHz or
	(18+14.5GHz)	28+18GHz
	(eµA)	(e μ A)
20	505	320
27	306	270
30	101	116
31	68	67
34	21	41
35	16	28
37	10	12
38	6.6	8
42	1.6	0.5
43	(1)	
44	0.16	

VENUS: 6-9 kW, $B_{inj} \ge 3.3$ T, $B_{ex} = 2.1$ T SECRAL: 1.8-3.2kW, $B_{inj} = 2.7$ T, $B_{ex} = 1.4$ T

SECRAL performance in production of highly charged heavy ions demonstrate ECRIS optimized design plays more important role besides frequency scaling and rf power effect

SECRAL produced 1.5 eµA Bi⁵⁰⁺, 18GHz, stainless steel chamber.

Better results for highly charged Bi beam should be produced by 18+14.5GHz+Al chamber.

	²⁰⁹ Bi	SECRAL	VENUS
v		18GHz	28GHz
	(Max. power) Max. power $)$
Эμ.		2.6kW	>4.5kW
		(eµA)	(eµA)
	28	214	240
	30	191	225
	41	22	15
	43	17.3	11.5
	44	15.2	7.7
	46	10	3.6
	47	8	2.4
	48	4.3	1.4
	49	2.6	1.0
	50	1.5	0.5

Preliminary Test Results of SECRAL at 24GHz—Xe beam

Beam Emittance Measurement at SECRAL

IMP Allison-type emittance scanner. Located after the analyzing magnet

VENUS emittance

From D.Leitner talk at Cycllotron07

SECRAL Operation for HIRFL Accelerator

Beams operated for accelerator:

²⁰⁹Bi³¹⁺, ¹²⁹Xe²⁷⁺, ⁷⁸Kr¹⁹⁺, ⁵⁸Ni¹⁹⁺

A† 18GHz, †ypical rf power 1.3-2.0 kW, extraction voltage 10-22kV Beam intensity during operation:

120-150 eµA for Bi,Xe,Kr (V>15kV), 50-70 eµA Ni¹⁹⁺(9.8kV)

Total beam time from SECRAL for HIRFL: >2000 h

SECRAL great contribution to HIRFL in terms of intensity and energy SFC Xe beam intensity increased by factor 10 SSC Xe beam intensity increased by factor 50 CSRm accelerated Xe²⁷⁺ beam to 235 MeV/u, accumulated beam intensity up to 500 eµA (1×10⁸ pps); Bi³¹⁺and Ni¹⁹⁺ not available before

With ^{78}Kr beams at CSRe, 3 new nuclides ($^{63}\text{Ge},^{65}\text{As},^{67}\text{Se}$) were identified firstly $\Delta m/m < 10^{-6}$

SECRAL with an innovative magnet structure and unique features may open a new way for developing high performance and compact SC-ECR ion source

SECRAL preliminary results at 24GHz are promising and exciting although commissioning time is too short. Better results should be coming up.

Unfortunately the high temperature oven not ready, Uranium beam not yet tested at SECRAL

			SECRAL	SECRAL	VENUS
		Q	18 GHz	24GHz	28 GHz
			<3.2 kW	3-4 kW	6-9kW
			е µА	е µА	еµА
	¹⁶ O	6+	2300		2860
		7+	810		850
	⁴⁰ Ar	12+	510	650	860
		14+	270	440	514
•		16+	73	149	270
		17+	8.5	14	36
Ì	¹²⁹ Xe	20+	505		320
		27+	306	455	270
σ		30+	101	152	116
5		31+	68	85	67
		34+	21		40
		35+	16		28
		37	10		12
		42+	1.5		0.5
		43+	1		
re	²⁰⁹ Bi	28+	214		240
		30+	191		225
		41+	22		15
		44+	15		7.7
		48+	4.2		1.4
		50+	1.5		0.5

HIRFL-CSR Commissioning and Operation

1998Project approved2000-2005Construction2006-2007Commissioning2008 - presentOperatingTotal budget of the HIRFL-CSR project: 42M\$

CSR Main Performances

	CSRm	CSRe
Ion Species	P,C-U	P,C-U, RIB,HCI,
		Molecular &
		Cluster
Energy (MeV/u)	2350~2800 (P)	2000(P)
$(B_{max} = 1.4 \sim 1.6 \text{ T})$	900~ <u>1100</u> (¹² C ⁶⁺)	620~760 (¹² C ⁶⁺)
	420~520 (²³⁸ U ⁷²⁺)	400~500 (²³⁸ U ⁹²⁺)
$\Delta P/P$	<10-4	<10-5
Emmitance	$\leq 5 \pi$ mm-mrad	$\leq 1 \pi$ mm-mrad

CSRm Injection Scheme

C, N, O, F, Ne, Ar, Ca, A<40, E = 7--10 MeV/uSFC + CSRm Stripping Injection + E-cooling $\rightarrow \rightarrow I=10^{8-9}$

Ar, Kr, Xe, Ta, Au, Pu, U, $A \ge 40$, E = 10---25 MeV/u SFC + SSC + CSRm

Multiple Multi-turn Injection + E-cooling $\rightarrow \rightarrow I=10^{7-8}$

HIRFL-CSR

- More than 80% CSR components built by IMP.
- **GSI** colleagues were invited as consultants and gave a lot advices.

Electron coolers (BINP-IMP)

RF

e-cooler

UHV System of CSR

Bake-out temperature: 250°C, CSR reached vacuum: **5** ×**10**⁻¹² **mbar**

CSR RF System (IMP-BINP)

RF-station for acceleration CSR m by BINP $f = 0.24 \sim 1.81$ MHz, $V_m = 9$ kV

RF for beam deceleration CSRe Designed and built by IMP

C⁶⁺-600MeV/u Ramping in CSRm

07/09/29 06:25

SFC-¹²C⁴⁺-7MeV/u, I_{ini.}= 11uA, STI, 1800uA in 10s, 10000uA on top, 7 ×10⁹

MMI + Ramping (³⁶Ar¹⁸⁺--22~368MeV/u) in CSRm Final record: 1.2mA, 4×10⁸ 07/12/10

Time (s)

Multi-time Injection for **CSRe** 1st Commissioning

¹²C⁶⁺-660MeV/u

07/10/23

Slow extraction for ¹²C⁴⁺-300MeV/u in CSRm

Time

Summarize: CSR Beam Status

- lons: ${}^{12}C^{6+}$, ${}^{36}Ar^{18+}$, ${}^{78}Kr^{28+}$, ${}^{129}Xe^{27+}$
- **Energy:** 1GeV/u for C & Ar in CSRm

Intensity: $10mA (7\times10^9)$ for ${}^{12}C-600MeV/u$ in CSRm $1.2mA (4\times10^8)$ for ${}^{36}Ar-368MeV/u$ in CSRm $0.5mA (7\times10^7)$ for ${}^{78}Kr-487$ MeV/u in CSRm $0.5mA (1\times10^8)$ for ${}^{129}Xe-235MeV/u$ in CSRm $15mA (8\times10^9)$ for ${}^{12}C-660MeV/u$ in CSRe Fast -extraction: single-turn beam injection into CSRe; RIB beams produced at RIBLL2.

Slow-extraction: 3 s for C-300MeV/u from CSRm; Actively E variation ; For external-target experiments and ion therapy.

Experiments: RIB beams from RIBLL2; Isochronous mode in CSRe and short-live nuclei mass measurement, $\Delta M/M \sim 10^{-6}$; 8 patients treatment.

Research and Physics Programs

HIRFL: Exp. Setups

IMP synthesis more than 25 new isotopes in the past years.

RIBLL 1: 1st Radioactive Beam Line in Lanzhou

$6 imes 10^{-4}$
50-100
~ 300
$0-5^{\circ}$
<1

Mass & Decay Measurement at CSRe

RIBLL2 + CSRe

Isochronous mass spectrometer

 $481 \text{MeV/u} \ ^{78}\text{Kr} \longrightarrow {}^{9}\text{Be} \longrightarrow \text{RIB}$

test run

- The end of 2007:
- The end of 2008: 1st physics run

Nanowires made by Heavy-ion irradiation Collaborated with GSI

New diagnostic probe

New material produced by heavy-ion irradiation

Charged Particle Detector and Single-particle Effect Study

- >Si and Si(Li) detectors for nuclear physics and space researches
- >Stripped Si detectors under development
- Single-particle effect study in space application

Heavy-Ion Cancer Therapy Center

Clinical Trials for the shallow-seated Tumor therapy

3D conformal irradiation method

Deep-seated Tumor Therapy at HIRFL-CSR

剂

©Collaborated with local hospitals

103 patients treated for ~10 kinds of shallow-seated tumors (SSC)

68 patients for deep-seated tumors by HIRFL-CSR

Treatment date	depth	Ν
Nov. 2006	1.6cm	4
Jan.2007	2.1 cm	9
March 2007	2.1 cm	14
August 2007	2.1 cm	9
Dec. 2007	2.1 cm	15
March 2008	2.1 cm	15
Sept. 2008	2.1 cm	16
March 2009	2.1 cm	21
April, July 2009	3~11 cm	8

Before

After treatment 2-6 months

Local Control Rates Following Treatment of 79 Patients

Months after Treatment

- Squamous cell carcinoma (42-70.4GyE/4-10fr)
- Basal cell carcinoma (54.8-61.2GyE/6-11fr)
- Malignant skin melanoma (61-75GyE/6-7fr)
- Sarcoma (51-65.7GyE/6-11fr)

- Other skin lesions (30-60GyE/6-8fr)
- Lymphoma (40-54GyE/6-9fr)
- Adenocarcinoma (40-60GyE/6-9fr)
- Metastatic lymph nodes of carcinomas (40-70GyE/6-11fr)

Int J Mol Med, 2008,22(suppl.) :186

IMP Dedicated Ion Therapy Facility

80-420 MeV/u, C beam, 5×10⁸ pps, will be built in Lanzhou

Near-future Development

Present Status & Prospective of the Main Equipments for Nuclear Physics Experiment

During CSR construction, almost no budget for physics setups.

- SHANS: Spectrometer for Heavy Atom and Nuclear Structure
- **CSRe:** Experimental Ring of CSR
- ETF: External Target Facility at CSRm

SHANS

Spectrometer for Heavy Atom and Nuclear Structure

Future Plan for SHN at HIRFL

Gas-Filled Recoil Separator - GFRS

• Test by α source

Pumping System

Differential

- Testing with target recoils
- To be tested with typical reactions

Reaction Chamber

-	Configuration	Qv-D-Qv-Qh
1000	Trajectory length	6.5 m
	Acceptance	280πmm·mrad (h) 450πmm·mrad (v)
A State of the	Central trajectory radius	1.8 m
ALC: NO	Bending angle of D	52°
	Max magnetic rigidity	2 88 Tm

Detection Chamber

RFQ Cooler and Buncher

Laser Multi-step Resonant Ionization

No wave length scanning needed

• Goal: SHE region

CSRe

- Status of CSRe
 - ToF detector for mass measurement

(running)

- Schottky detectors for mass & decay measurement
- Electron cooler
- Cluster-jet target

(under testing) (running) (testing)

- Recent nuclear physics exps. at CSRe
 - Mass measurement: IMS, SMS, ToF
 - Decay measurement: SMS

ETF I: External Target Facility, Phase I

ETF II: External Target Facility, Phase II

Research Topics Planned at CSR

- Mass measurement of the short-lived nuclei at CSRe with ToF
- *β*-decay lifetime measurement at CSRe with Schottky spectrometry
- Halo nuclei, cluster structure of the weakly bound nuclei & neutron-cluster at ETF
- Deformed nuclei, γ-spectroscopy & new magic number at ETF
- Astrophysics related issues

Other topics

- Atomic Physics with HCI started
- Cancer therapy started
- Plasma physics and HED physics planned
- Proton/H.I. radiography planned
- ...

Near-future Development of HIRFL

What is the most important for HIRFL near future:

- Increase beam intensity from SSC
- Increase injected beam intensity for CSR.

Three steps depending on financial support

- Upgrade existing cyclotron system;
- Build a low energy fixed frequency linac as a new SSC injector instead of SFC;
- Build an intense heavy ion linac as a new injector for CSR

Build intense heavy ion linac injectors

New SSC-linac injector

Build a low energy fixed frequency linac as a new SSC injector

Items	value
Frequency	51.2 MHz
Mass to charge ratio	≦ 7
ECRIS extraction voltage	50 kV
ECRIS extraction emittance (normalized)	0.6
RFQ type	4-rod
DTL type	IH
Extraction energy of stage1	0.6 MeV
Extraction energy of stage2	1.0 MeV
Operation mode	CW

Expected Beam Intensity from Linc+SSC:

For Ca,Ni,Zn, 6MeV/u, 1-2 p μ A, increased by a factor 2-4 compared to SFC; For Kr, Xe, Pb, U, 10MeV/u, 0.5-1p μ A, increased by a factor 10 compared to SFC+SSC

SSC-LINAC

CSR-linac injector

Normal Conductor Linac 10MeV/u, A/Q 3-8.5, pulsed beam, 0.5-2 emA

Heavy Ion Superconducting LinAC (HI-SLAC)

Preliminary Design

IMP Accelerator Technology needed urgently R&D

- Heavy ion normal conductor linac (RFQ and IH linac)
- Heavy ion superconducting linac

We expect collaborations between IMP and Argonne lab on physics research and accelerator technology development.

Thanks for your attention!