

Metamaterial-Loaded Waveguides for Accelerator Applications

Sergey Antipov

Argonne Wakefield Accelerator Group, Argonne, IL Illinois Institute of Technology, Chicago, IL

Beams and Applications Seminar APS, Argonne, April 13th, 2007

Outline of the talk

- Introduction to metamaterials
 - Artificial ε and μ
 - Properties of LHM
 - Simulations and Measurements
- Metamaterial-loaded waveguides
 - Dispersion analysis
 - Wakefield generation
 - Applications
- Conclusion, future directions

Introduction

- Metamaterials (MTM) are manmade materials with desired (electromagnetic) properties.
- For simplicity of design and manufacturing they are arrays of cells or basic elements

Effective media approximation

 $\lambda >> d \Rightarrow \exists \, \hat{\varepsilon}(\omega) \text{ and } \hat{\mu}(\omega)$

Artificial permittivity (ε)

Different geometries for ε were studied (note anisotropy).

For certain polarizations of fields they produce different responses:

PCB etching

Plasma of electrons in metals

$$\omega_p^2 = \frac{ne^2}{\varepsilon_0 m_{eff}}$$

UV-optical for metals

Artificial permeability, Split Ring Resonator (SRR)

GHz design requires mm-scale elements to satisfy $\lambda >> d$ condition

Simulations

Simulations

 $\lambda >> d$

Metamaterial vs. Dispersive, anisotropic media

LHM – left-handed media or metamaterial?

$$\hat{\varepsilon} = \begin{pmatrix} \varepsilon_1 & 0 & 0 \\ 0 & \varepsilon_2 & 0 \\ 0 & 0 & \varepsilon_3 \end{pmatrix}$$

VS.
$$\varepsilon_{1} = 1 - \frac{\omega_{pe}^{2}}{2i\gamma\omega + \omega^{2}} \qquad \varepsilon_{2,3} = 1$$

$$\hat{\mu} = \begin{pmatrix} \mu_1 & 0 & 0 \\ 0 & \mu_2 & 0 \\ 0 & 0 & \mu_3 \end{pmatrix}$$

$$\mu_2 = 1 + \frac{F \omega^2}{\omega_{nu}^2 - 2i\alpha_n\omega - \omega^2}$$
 $\mu_{1,3} = 1$

At the end of the day...

We can design artificial materials with specific electromagnetic properties, at certain frequencies, needed for particular application

- We are also able to produce artificial materials with properties, that were not observed in natural materials, such as ε <0 and μ <0 at some frequency ω
 - This can lead to new types of devices

Media with ε <0 and μ <0 is called **Double-Negative (DNM)**or **Left-Handed (LHM)**

History of research

- 1967 properties of media with ε<0, μ<0</p>
- 1996 wire array (Imperial college)
- 1999 split ring design (Imperial college)
- 2000 superlens proposal (Imperial college)
- 2000 experimental demonstration (srr+wire array, GHz) (UCSD)
- 2001 negative refraction (srr+wire array, GHz) (UCSD)
- 2004-2005 THz designs
- 2005 optical (nanopairs, Purdue)
- 2005 "near-sighted superlens" (silver film, UC Berkeley)
- 2006 cloaking device idea and proof of principal demonstration

Left-Handed or Double Negative metamaterials (ε<0, μ<0)

$$\begin{bmatrix} \vec{k}, \vec{H} \end{bmatrix} = -\frac{\omega}{c} \varepsilon \vec{E}$$

$$\begin{bmatrix} \vec{k}, \vec{E} \end{bmatrix} = \frac{\omega}{c} \mu \vec{H}$$

form left-handed vector system instead of usual right-handed.

Poynting vector always forms a right-handed system with the field vectors

Energy propagates counterdirected to the phase front.

Negative refraction

Type = E-Field (peak)
Monitor = e-field (f=11;x=50) [pH]

Component = x Plane at x = 50 Frequency = 11

Phase = 0 degrees

Maximum-2d = 13.4898 V/m at 50 / 48.6341 / 9.26124

$$n = -\sqrt{\left|\varepsilon_{xr}\mu_{yr}\right|} \left[1 - \frac{i}{2} \left(\frac{\varepsilon_{xi}}{\left|\varepsilon_{xr}\right|} + \frac{\mu_{yi}}{\left|\mu_{yr}\right|}\right)\right]$$

We repeated the original experiment

TE₁₀ mode in MTM-loaded waveguide (experiment)

We study the effects of metamaterial insertions on transmission through the waveguide. Note Anisotropy. Dispersion engineering

TE₁₀ mode in MTM-loaded waveguide (experiment)

Metamaterials and Coplanar waveguides

Results. Compact band pass filter. Transmission.

Accelerator applications:

Particle – metamaterial interaction => Cherenkov synchronism

Argonne Wakefield Accelerator Facility

- RF Single klystron: 1.3 GHz, 24 MW, 8µs
- Photoinjector: 1½ cell, currently running with Mg photocathode
- Charge per bunch: 1 to 100 nC
- Bunch length: 14 ps FWHM
- Maximum energy(after high current LINAC): 14 MeV
- Length: ~7 meters
 - Brief history:

The AWA Facility successfully demonstrated

- collinear wakefield acceleration
- two-beam-acceleration in dielectric loaded structures
- the upgraded drive gun has led to increasingly higher gradients, recently reaching 100 MV/m.

http://www.hep.anl.gov/awa/

TM Modes in MTM Loaded Waveguide (z-oriented)

$$\hat{oldsymbol{arepsilon}} = egin{pmatrix} oldsymbol{arepsilon}_{oldsymbol{oldsymbol{arepsilon}}} & 0 & 0 \ 0 & oldsymbol{arepsilon}_{oldsymbol{oldsymbol{arepsilon}}} & 0 & 0 \ 0 & oldsymbol{arepsilon}_{oldsymbol{oldsymbol{arepsilon}}} & 0 & 0 \ 0 & oldsymbol{arepsilon}_{oldsymbol{oldsymbol{arepsilon}}} & oldsymbol{oldsymbol{arepsilon}}_{oldsymbol{oldsymbol{arepsilon}}} & oldsymbol{arepsilon}_{oldsymbol{oldsymbol{arepsilon}}} & oldsymbol{arepsilon}_{oldsymbol{oldsymbol{arepsilon}}} & oldsymbol{arepsilon}_{oldsymbol{oldsymbol{arepsilon}}} & oldsymbol{arepsilon}_{oldsymbol{oldsymbol{arepsilon}}} & oldsymbol{oldsymbol{arepsilon}}_{oldsymbol{oldsymbol{arepsilon}}} & oldsymbol{oldsymbol{arepsilon}}_{oldsymbol{oldsymbol{arepsilon}}} & oldsymbol{oldsymbol{arepsilon}}_{oldsymbol{oldsymbol{arepsilon}}} & oldsymbol{oldsymbol{arepsilon}}_{oldsymbol{oldsymbol{arepsilon}}_{oldsymbol{oldsymbol{arepsilon}}} & oldsymbol{oldsymbol{arepsilon}_{oldsymbol{oldsymbol{arepsilon}}} & oldsymbol{oldsymbol{arepsilon}}_{oldsymbol{oldsymbol{arepsilon}}} & oldsymbol{oldsymbol{arepsilon}_{oldsymbol{oldsymbol{arepsilon}}}} & oldsymbol{oldsymbol{oldsymbol{arepsilon}}_{oldsymbol{oldsymbol{arepsilon}_{oldsymbol{oldsymbol{arepsilon}_{oldsymbol{oldsymbol{arepsilon}}}} & oldsymbol{oldsymbol{oldsymbol{arepsilon}}_{oldsymbol{oldsymbol{oldsymbol{arepsilon}_{oldsymbol{oldsymbol{oldsymbol{o$$

$$\hat{\mu} = \begin{pmatrix} \mu_{\perp} & 0 & 0 \\ 0 & \mu_{\perp} & 0 \\ 0 & 0 & \mu_{\parallel} \end{pmatrix}$$

$$k_{z} = k_{0} \sqrt{\varepsilon_{\perp} \mu_{\perp} \left(1 - \frac{\chi_{x}^{2} + \chi_{y}^{2}}{\varepsilon_{\parallel} \mu_{\perp} k_{0}^{2}} \right)}$$

Dispersion of TM modes in MTM-loaded waveguide

Mode excitation analysis

- Provides frequency of generation for each mode
- Does not provide energy exchange (beam dependent)

Application: accelerator with dipole mode suppression

Non-magnetic regime does not exist for wire array!

This is an idea:
We do not discuss losses,
mode coupling,
breakdown, charging etc..

High order modes synchronize in non-magnetic region

Wakefield calculation in metamaterial-loaded waveguides

- Long waveguide of any cross section
- Uniformly (⊥) loaded with anisotropic and dispersive media
- "Pancake" beam (δ(z-vt)) passing along waveguide axis
- **Fourier transform in time and z** \rightarrow 2D simulation with parameter ω

Divergences corresponds to poles of inverse Fourier trasform

Postprocessing:

- 1. FFT for simple cases
- 2. Direct spectrum calculation through residue method

RES(f, z=z0)=Lim(f(z)(z-z0), z \rightarrow z0)

Wakefield: comparison with Dielectric-loaded Accelerator

Cylinder waveguide, R=3cm, ε=10, 1nC beam, 5MeV energy

 E_z field behind the bunch, MV/m

DLA script by A. Kanareykin et al.

Excitation spectrum: comparison continued..

Waveguide loaded with anisotropic and dispersive media

Simulation results: Excited spectrum, off-centered beam

Comparison with dispersion analysis

Simulation results: Excited spectrum, centered beam

Detection applications

- Backward modes
- Several excitation regimes
- Multithreshold excitation (nonmagnetic – left-handed regime)
- Strong dependence on longitudinal distribution (future studies)
- Stronger signals at resonance
- High angle values for CR cone in bul configuration
- Backward radiation in bulk (was not yet observed)

Conclusion, Future plans

- We studied metamaterials: theory, simulation, experiment
- Learned how to design and manufacture them
- Loaded waveguide studies
 - Dispersion
 - Wakefield generation: developed robust, universal simulation
- Plan to perform a wakefield experiment at AWA.
 - goal is to detect backward mode
- Future studies include:
 - Longitudinal beam distribution for wakefield generation
 - Non-magnetic regime studies
 - Large scale simulation development for metamaterials. VORPAL

The experiment is on the way...

