Emittance Compensation in High Brightness RF Photo-Injectors: an introduction (to the SPARC project)

Massimo.Ferrario@LNF.INFN.IT

Transverse Brightness of Electron Beams

$$B_n = \frac{2I}{\varepsilon_{nx}\varepsilon_{ny}} \left[\frac{A}{m^2 r a d^2}\right]$$

I = peak current $\varepsilon_{nx} = \text{rms normalized transverse emittance}$

 γ τ 2

 \mathbf{O} T

Quality Factor: beam peak current density normalized to the rms beam divergence angle

Round Beam :
$$\varepsilon_{nx} = \varepsilon_{ny}$$
, $J = I/\sigma^2 \implies B_n = \frac{2J}{(\sigma'\gamma)^2} = \frac{2J\sigma}{\varepsilon_n^2}$
 $\sigma = \sqrt{\varepsilon_n \beta/\gamma}$

SASE-FEL Scaling Laws

 $\left(\overline{1+K^2/2}\right)_{\infty}$ $(1+K^2)$ $\delta \gamma$ δγ $\underline{\mathcal{E}_n}$ λ_r^{MIN} ∞ Iν

 $\gamma^{\overline{3/2}}$ $\frac{\varepsilon_n \gamma^{3/2}}{I(1+K^2)}$ $\infty - \frac{1}{K_{\gamma}}$ $L_g \propto \frac{1}{K_{-}}$

R. Saldin et al. in *Conceptual Design of a 500 GeV e+e- Linear Collider with Integrated X-ray Laser Facility*, DESY-1997-048

Schematic View of the Envelope Equations

The beam undergoes two regimes along the accelerator:

Laminar Beam-Transverse Space charge Field

$$E_r^{sc}(\zeta_s) = \frac{Q}{4\pi\varepsilon_o R_s L} \left(\frac{1 - \zeta_s/L}{\sqrt{\left(1 - \zeta_s/L\right)^2 + A_{r,s}^2}} + \frac{\zeta_s/L}{\sqrt{\left(\zeta_s/L\right)^2 + A_{r,s}^2}} \right) = \frac{Q}{4\pi\varepsilon_o R_s L} g(\zeta_s, A_{r,s})$$

Emittance Oscillations and Growth are driven by space charge differential defocusing in core and tails of the beam

Simple Case: Transport in a Long Solenoid

 $\sigma'' = 0 \implies \text{Equilibrium solution }? \implies \sigma_{eq}(\xi)$

Small perturbations around the equilibrium solution

$$\sigma = \sigma_{eq} + \delta\sigma \qquad \qquad \delta\sigma'' + 2k_s^2\delta\sigma = 0$$

$$\sigma(\xi) = \sigma_{eq}(\xi) + (\sigma(\xi) - \sigma_{eq}(\xi))\cos(\sqrt{2k_s}z)$$

$$\sigma'(\xi) = -\sqrt{2k_s}(\sigma(\xi) - \sigma_{eq}(\xi))\sin(\sqrt{2k_s}z)$$
Plasma frequency

Envelope oscillations drive Emittance oscillations

Perturbed trajectories oscillate with the same frequency but with different amplitudes

A Spread in Plasma Frequencies drives a Beating in Emittance Oscillations

Beam subject to strong acceleration

$$\sigma'' + \sigma' \frac{\gamma'}{\gamma} + \sigma \frac{\Omega^2 \gamma'^2}{\gamma^2} = \frac{I}{2I_A \sigma \gamma^3} + \frac{\varepsilon_{\mu,sl}^2}{\sigma^3 \chi^2}$$

where

 $\gamma = \gamma_0 + \gamma' z$ $\gamma' \equiv \frac{E_{acc}}{mc^2}$

$$\Omega^{2} = \left(\frac{eB_{ol}}{mc\gamma'}\right)^{2} + \left\{\begin{array}{c} \approx 1/8 \ SW \\ \approx 0 \ TW \end{array}\right\}$$

Normalized focusing gradient (solenoid +RF foc.)

PHYSICAL REVIEW E

VOLUME 55, NUMBER 6

JUNE 1997

Envelope analysis of intense relativistic quasilaminar beams in rf photoinjectors: A theory of emittance compensation

Luca Serafini Istituto Nazionale di Fisica Nucleare, Milano, Via Celoria 16, 20133 Milano, Italy

James B. Rosenzweig

Department of Physics and Astronomy, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, California 90095-1547 (Received 11 November 1996)

Cauchy Transformation:

Dimensionless quantity:

$$\frac{d^2\tau}{dy^2} + \Omega^2\tau = \frac{1}{\tau}e^{-y}$$

 $\frac{d^2\sigma}{d\sigma^2} + \Omega^2\sigma = \frac{S(\xi)}{\sigma}e^{-y}$

Particular Solution:

$$z \Longrightarrow y = \ln \frac{\gamma}{\gamma_o}$$

$$\tau = \frac{O}{\sqrt{S}}$$

Back to Real World: Invariant Envelope Solution

This solution represents a beam equilibrium mode that turns out to be the transport mode for achieving minimum emittance at the end of the emittance correction process (L.S and J.B.R., *PRE* 55 (1997) 7565)

An inportant property of the Invariant Envelope

$$\sigma_{INV} = \frac{1}{\gamma'} \sqrt{\frac{2I(\zeta)}{I_A (1 + 4\Omega^2)\gamma}}$$

$$\sigma_{inv}' = \frac{1}{\gamma'} \sqrt{\frac{I(\zeta)}{2I_A (1+4\Omega^2) \gamma_o^{3/2}}}$$

Constant phase space angle:

Small perturbations around the equilibrium solution

$$\delta\sigma = \delta\sigma_o \cos(\psi) + \sqrt{2} \frac{\gamma_o}{\gamma'} \delta\sigma_o' \sin(\psi)$$
$$\delta\sigma' = -\frac{1}{\sqrt{2}} \frac{\gamma'}{\gamma} \delta\sigma_o \sin(\psi) + \delta\sigma'_o \frac{\gamma_o}{\gamma} \cos(\psi)$$

$$\psi = \frac{1}{\sqrt{2}} \ln \left(\frac{\gamma}{\gamma_o} \right) \qquad \qquad \delta \sigma_o = \sigma_o - \sigma_{INV}$$

Emittance Oscillations

$$\Delta \varepsilon_n(z) \cong \frac{\delta \sigma_0}{\gamma'} \sqrt{\frac{I/I_0}{2\gamma}} |\cos(\psi) - \sqrt{2}\sin(\psi)|$$

Envelope Oscillations drive emittance oscillations $\Delta \mathcal{E}_n \circ$

and are dumped by acceleration

Laminarity Parameter

$$\sigma_{INV} = \frac{1}{\gamma'} \sqrt{\frac{2I(\zeta)}{I_A(1+4\Omega^2)\gamma}}$$
$$\rho = \frac{I\sigma^2}{2\gamma I_A \varepsilon_n^2} = \left(\frac{I}{2\gamma I_A \varepsilon_n} \frac{1}{\gamma' \sqrt{1/4+\Omega^2}}\right)^2$$

Typical X-FEL Beam

The New working Point for a Split RF Photoinjector

Adopted by LCLS, TESLA-XFEL, ORION, SPARC,...

The SPARC FEL Project On behalf of the SPARC study group

SPARC Study Group

D. Alesini, S. Bertolucci, M.E. Biagini, C. Biscari, R. Boni, M. Boscolo, M. Castellano, A. Clozza, G. Di Pirro, A. Drago, A. Esposito, M. Ferrario, V. Fusco, A. Gallo, A. Ghigo, S. Guiducci, M. Incurvati, C. Ligi, F. Marcellini, M. Migliorati, C. Milardi, L. Palumbo, L. Pellegrino, M. Preger, P. Raimondi, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B.Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi, V.Verzilov, C. Vicario, M. Zobov (INFN /LNF) ==> 9 FTE

F. Alessandria, G. Bellomo, I. Boscolo, F. Broggi, S.Cialdi, C. DeMartinis, D. Giove, C. Maroli, V. Petrillo, L. Serafini,

(INFN /Milano) ==> 4 FTE

E. Chiadroni, G. Felici, D. Levi, M. Mastrucci, M. Mattioli, G. Medici, G. S. Petrarca (INFN /Roma1) ==> 1 FTE

L. Catani, A. Cianchi, A. D'Angelo, R. Di Salvo, A. Fantini, D. Moricciani, C. Schaerf, (INFN /Roma2- Università di Roma "Tor Vergata") ==> 1 FTE

R. Bartolini, F. Ciocci, G. Dattoli, A. Doria, F. Flora, G. P. Gallerano, L. Giannessi, E. Giovenale, G. Messina, L.Mezi, P.L.Ottaviani, L. Picardi, M. Quattromini, A.Renieri, C.

Ronsivalle

(ENEA/FIS)

L.Avaldi, C.Carbone, A.Cricenti, A.Pifferi, P.Perfetti, T.Prosperi, V.Rossi Albertini, C.Quaresima, N.Zema

(CNR)

150 MeV Photo-injector R&D Project to investigate High Brightness e⁻ Beam Production for SASE-FEL experiments

			•		
Frequenc	cy: 2856 MHz		Normal Condu	icting	
<u>GUN PARAN</u>	METERS		LINAC PARAMETERS		
Peak Field:	120-140 MV/m	(15 MW)	Accelerating Field:	25-30 MV/m	(50 MW)
Solenoid Fiel	d: 0.3 Tesla		Solenoid Field:	0.1 Tesla	
Charge:	1 nC		Beam Energy:	150 MeV	
Laser:	10 ps x 1 mm	(Flat Top)			

34 m

SPARC Linac: the Time Table

Ź		1 st	year			2 nd	year			3 rd	year	
1.1 Laser	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź
1.2 RF Gun	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź		Ź	Ź	Ź
1.3 Linac	Ź	Ź	Ź	Ź	Ź	Ź		Ź	Ź	Ź	Ź	Ź
1.4 Diagncontr.	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź
1.5 Commiss.	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź	Ź

design acquisition assembling test

We are waiting for delivery of the funding to our Institutions: released by a Techn. Committee of the Res. Department (MIUR)

A view of the complex with Shielding Ground and building roof removed

SPARC-Phase 1

BNL/SLAC/UCLA 1.6 cell S-Band RF GUN

Movable Emittance-Meter

0

0,24

0,25

0,26

0,27 Bz [T]

0,28

0,3

0,29

0,3

0,29

GUN

ь

5

4

3

2

1

0

EnX_[mm mrad

R [mm]

0,25

0,26

0,27 Bz_[T]

0,28

0,29

0

0

0,24

0,25

0,26

0,27 Bz [T]

0,28

0,3

5

4

3

2

1

0

0,24

SPARC-Phase 2

Boscolo/Ronsivalle PARMELA

Gun-end linac simulations

Beam distribution with ripple \implies NOT expected significant changes!

Low-emittance electron-beam generation with laser pulse shaping in photocathode radio-frequency gun

J. Yang, F. Sakai, T. Yanagida, M. Yorozu, and Y. Okada Sumitomo Heavy Industries, Ltd. (SHI), 2-1-1 Yato-cho, Nishitokyo-city, Tokyo 188-8585, Japan

K. Takasago and A. Endo

The Femtosecond Technology Research Association, 5-5 Tokodai, Tsukuba, Ibaraki 300-2635, Japan

A. Yada and M. Washio Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-0072, Japan

(Received 17 December 2001; accepted for publication 26 April 2002)

FIG. 2. The temporal distributions of shaped gaussian (a) and square (b) UV laser pulses with a pulse length of 9 ps FWHM.

PARMELA output for SPARC

3 groups of "GENESIS slices" were chosen at different current

SPARC time – dependent GENESIS simulations;

 $\lambda = 485.5$ nm; Lsat = 11.0 m

<u>SPARC-Phase 3</u>

Velocity Bunching in Photoinjectors i.e. Compression during Acceleration

- Alternative option of bunch compression ⇒ high brightness sub-ps beams (as needed by X-Ray SASE Fel's)
- Compression is rectilinear (no Coherent Synch. Radiation effects), based on *longitudinal focusing* in **slow RF waves**
- Performed at low energy (10-80 MeV), fully integrated into the emittance correction process (for maximum brightness)

A quarter synchrotron oscillation gives phase compression

• By *Injecting* at $\gamma = \gamma_r$ and *extracting* at $\xi = 0^\circ$ we perform an energy spread enhancement associated to a phase spread reduction

Zoo m-in of the diagram plot ted in previous transp. corresponding to $\gamma \leq 20$

Transverse Dynamics of a laminar plasma-beam subject to Velocity Bunching

 Assuming a current growing at the same rate as the beam energy the envelope equation becomes

$$I = \frac{I_0 \gamma}{\gamma_0} \qquad \qquad \sigma'' + \sigma' \frac{\gamma'}{\gamma} + \sigma \frac{\Omega^2 {\gamma'}^2}{\gamma^2} - \frac{I_0}{2I_A \sigma \gamma_0 \gamma^2} = 0$$

• and the *new (exact) solution* is

$$\sigma_{RFC} = \frac{1}{\Omega \gamma'} \sqrt{\frac{I_0}{2I_A \gamma_0}}$$

RF Compression Invariant Envelope With Same on fin With Serie Kterya Proclising E

$$k_p^{RFC} = \frac{\Omega \gamma'}{\sqrt{2}\gamma}$$

Three Conditions to preserve emittance while bunching

- current growing at the same rate as the beam energy (velocity bunching !, not ballistic)
- (additional external focusing to match onto a parallel envelope (I.E. RFC solution)

-=const.

• RF compressor accelerating section longer othan a plasma wavelength (2-3 m)

$$k_p^{RFC} = \frac{\Omega \gamma'}{\sqrt{2}\gamma}$$

PRELIMINARY LAYOUT

First PARMELA Simulation of RF Compressor

Ipeak=500 A En=0.6 π mm mrad ΔE/E= ± 2.25%

RF Compression at DUVFEL (B. Graves & Ph. Piot)

Examined two solutions: S-band normal conducting and L-band SC

S-band Room-Temperature

Start-to-End Simulations (First with RF Compressor!) Slice Analysis at Linac End. (T=2.5 GeV)

3D simulation with GENESIS @ 1.5 nm

Tab. 3: Undulatorscharacteristics

	Undulator 1	Undulator 2
	@1.5nm	@13.5 m
Туре	Habach	Habach
Period	3 cm	5 m
K	1.67	4.88
Gap	1267 mm	12.16nm
ResidnaFell	1.25T	1.25T

Tab. 4: FEL-SASE expected performances

Wavelength (λ)	1.5 nm	13.5 nm
Saturation length	24.5 m	14.5 m
Peak Power	$10^{10} \mathrm{W}$	$4 10^{10} \mathrm{W}$
Peak Power 3 harm.	$2 10^8 \mathrm{W}$	5 10 ⁹ W
Peak Power 5 ha rm.	$3 10^7 \mathrm{W}$	$2 \ 10^8 \ W$
Brilliance	1.8 10 ³¹	$2 10^{32}$
Brilliance 3 la rm.	10 ²⁹	10 ³¹
Brilliance 5 h arm.	9 10 ²⁸	3 10 ²⁹

Laboratories 2 mile off map