The Role of the AOFSRR
(Asia–Oceania Forum for SR Research)
and the Cheiron School for Regional Network

Masaki Takata
(RIKEN/JASRI/SPring-8)
Aim of the AOFSRR

(history)
Asian Forum aimed at the information exchange among the SR facilities in Asia.
1st : Kobe (Japan) 1994 JSSRR
2nd : Pohan (Korea) 1995 PAL
3rd : SPring-8 (Japan) 1997 JSSRR
4th : Hiroshima (Japan) 2001 JSSRR
5th : Saga (Japan) 2004 JSSRR

(current status)
Existing facilities have been largely developed to produce exciting results. New 3rd generation facilities are now constructing.

(establishment of new organization)
the Asia/Oceania Forum for Synchrotron Radiation Research
(a) Based on established organization,
(b) From facility base to science base,
(c) Periodical and scheduled meeting,
(d) From Asia to Asia/Oceania,
(e) Communication with other world wide or regional organizations.
Organization Structure

The Australian Synchrotron Research Program (Australia)
The Chinese Society of Synchrotron Radiation Research (China)
The Indus (India)
The Japanese Society of Synchrotron Radiation Research (Japan)
The National Synchrotron Research Center (Thailand)
The National Synchrotron Radiation Research Center (Taiwan)
The Pohang Light Source (Korea)
The Singapore Synchrotron Light Source (Singapore)

Executive Committee

Richard F. Garrett (ASRP)
In Soo Ko (PLS)
Keng S. Liang (NSRRC)
Herbert O. Moser (SSLS)
Rajendra. V. Nandedkar (INDUS)
Weerapong Pairsuwan (NSRC)
Osamu Shimomura (JSSRR)
Hongjie Xu (CSSR)
Executive Committee

President: Yoshiyuki Amemiya (Japan)
Vice President: Keng Liang (Taiwan)
Treasurer: Richard Garrett (Australia)
Past President: Osamu Shimomura (Japan)
Members:
 - Moonhor Ree (Korea)
 - Herbert Moser (Singapore)
 - V.C. Sahni (India)
 - Weerapong Pairsuwan (Thailand)
 - Hongjie Xu (China)
Secretary: Masaki Takata (Japan)
Secretariat: JSSRR
MOU for the AOFSRR

ARTICLE 1

AOFSRR aims at the advancement of the science and technology of synchrotron radiation research in the Asian and Oceania region.

ARTICLE 2

AOFSRR shall undertake the following activities in order to promote the exchange of scientific and technological information;

1. To hold scientific meetings.
2. To keep in scientific contact and exchange facility information among parties, and cooperate with related organizations.
3. To provide a framework for cooperative activities such as staff exchanges, user access to other synchrotron facilities, and scientific and technical collaborations.
4. To do other works to activate the AOFSRR.

ARTICLE 3

This Memorandum of Understanding will come into effect on mm, dd, 2005 and will be valid for a period of five years. Renewal of this Memorandum of Understanding will be subject to discussion among the parties at least six months prior to the expiration of the period of validity. If any party wishes to make an amendment to this Memorandum of Understanding, the subject may be discussed by the parties and may be made valid through mutual consent by the parties.
Richard F. Garrett
Director,
Australia Synchrotron Research Program

Date: November 23, 2007

Hongjie Xu
President,
Chinese Society of Synchrotron Radiation

Date: November 23, 2007

Rajendra V. Nandedkar
Director,
INDUS

Date: November 23, 2007

Osamu Shimomura
President,
Japanese Society of Synchrotron Radiation Research

Date: November 23, 2007

Weerapong Pairswan
Director,
National Synchrotron Resarch Center

Date: November 23, 2007

Keng S. Liang
Director,
National Synchrotron Radiation Research Center

Date: November 23, 2007

In Soo Ko
Director,
Pohan Light Source

Date: November 23, 2007

Herbert O. Moser
Director,
Singapore Synchrotron Light Source

Date: November 23, 2007
1. Name
The Asia-Oceania Forum for Synchrotron Radiation Research is hereafter referred to as "the AOFSRR".

2. Objectives
(a) The objective of the AOFSRR is to strengthen regional collaboration in, and to promote the advancement of, synchrotron radiation research and related subjects in Asia and Oceania.
(b) To achieve the objective stated above, the AOFSRR shall, except in exceptional circumstances, hold a conference every year. The AOFSRR will also actively encourage any other activities that will promote synchrotron radiation research and allied subjects in the region.

3. Membership
Membership shall be open to those countries and regions (which are hereafter referred to as "regions") within the Asian-Oceanian region bounded by Australia, China, India, Japan, Korea, Singapore, Taiwan and Thailand and such other neighbouring regions as may be, from time to time, admitted by the Council.
4. Council and Executive
(a) The AOFSRR shall be administered by a Council consisting of one Councilor from each member region. The former chair is an ex-officio member.
(b) The Council shall elect a president, vice president and treasurer from its members. These three elected members constitute the Executive Committee. The president shall appoint a secretary who shall be an ex-officio member of the Council.
(c) Executive members shall hold office for one two-year term, after which elections shall be held. No member of the Executive shall serve more than three terms. The President shall serve for one two-year term and shall not be eligible for re-election as President.
(d) The Council and Executive shall meet at least once in every year. A quorum for meetings of the Council shall consist of not less than one half of the current membership eligible to vote. All members of the Executive must be present at a meeting of the Executive Committee.
(e) If the Councillor for a particular region is unable to attend a meeting of the Council, an alternate may be appointed.

5. Finances
Expenditure of AOFSRR funds is managed by the treasurer under the direction of the Council.

6. Changes to the constitution
Proposals for changes to the constitution shall be communicated in writing to the President at least six months prior to a Council meeting. A change to the constitution shall require a two thirds majority vote of all those eligible to vote at Council meetings. Voting may be recorded by mail or proxy.
1st WS of AOFSRR
November 23, 24, 2007

Participants
127
- general: 114
- student: 13

Nationality
- Australia: 10
- China: 14
- Japan: 73
- Korea: 16
- Singapore: 1
- Taiwan: 11
- Thailand: 2

- Facility Reports & Scientific Results
- Future Plans
- Memorandum of Understanding
- Constitution of AOFSRR

Sign and Seal MOU

• 2nd AOF Workshop:
 Hsinchu, Taiwan,
 November 2-3, 2007
2nd Work Shop of the Asian-Oceania Forum for Synchrotron Radiation Research

Place: National Chiao Tung University Library, Hsinchu, Taiwan,
Date: November 1-2, 2007
Participants: 350
Chair: Keng Liang (Vice President of AOFSRR)

Address by Amemiya

3rd Workshop Will be held at Australia Melbourne
December 1-5 2008
The international summer school is one of the important steps to develop the engineers and scientists resource for synchrotron radiation research in Asia Oceania region.

- To achieve the objective stated above, the AOFSRR shall hold a conference every year.
- The AOFSRR will also actively encourage any other activities that will promote synchrotron radiation research and related subjects in the region.

Specific Activities:

1. Organization of scientific collaboration meetings,
2. Exchange of information of facilities and user groups,
3. Provide a framework for cooperative activities,
It is YOUR AOF:

How Should it Develop?

- Organise and/or Facilitate Schools & other educational activities
- Promote international cooperation
- Assist in sharing resources
- Should the AOF meeting expand in future?
- Represent the Asia-Oceania community with other communities (USA, Europe…)
- Push for an International Union of SRR

European course aims to train young scientists in the use of large instruments by providing a general overview of the techniques and scientific possibilities associated with neutrons and synchrotron radiation to investigate condensed matter or biomedical topics.
1st AOFSRR Summer School
Cheiron School 2007

Organizer: AOFSRR, RIKEN/SPring-8, JASRI, KEK-PF

Aim:
To provide useful and basic knowledge as well as perspectives of synchrotron radiation science and technology for graduate students, postdoctorals, young scientists and engineers in Asia Oceania region.

Period: September 10th – 20th 2007

Site: SPring-8, Japan

Organizing Committee

School Staff

Principal: Yoshiyuki Amemiya (President of AOFSRR, Japan)

Vice Principal: Keng Liang (Vice President of AOFSRR, Taiwan)

Secretary: Masaki Takata (RIKEN/JASRI/SPring-8, Japan)

Council Member

Richard Garrett (Australia)
Osamu Shimomura (Japan)
In Soo Ko (Korea)
Herbert Moser (Singapore)
Rajendra Nandedkar (India)
Weerapong Pairswan (Thailand)
Hingjie Xu (China)
Brendan Kennedy (Australia)
Shih-Lin Chang (Taiwan)
M. Ree (Korea)
Sou-ichi Wakatsuki (Japan)
Why the "Cheiron School“?

The most importance is that This summer school should be useful and practical for the Asian Oceania SR facilities.
Thus, the school curriculum includes “meet the experts” and “BL practice”, where the students can consult experts for their own problems in SR science.

Cheiron is one of the immortal gods and provided the right knowledge and skill for the right person. For instance, Cheiron taught martial art to Hercules, art of medicine to Aesclulapius, equestrian art to Castor, and etc.
The policy of the summer school fits to Cheiron’s achievements.
Cheiron School 2007 by AOPSRR at Spring-8

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9:00</td>
<td>Mon</td>
<td>9:00</td>
</tr>
<tr>
<td>9:45</td>
<td>Reg. Open</td>
<td>10:00</td>
<td>Introductory Lecture at ASHI</td>
<td>10:00</td>
<td>ASH1</td>
<td>10:00</td>
<td>ASH2</td>
<td>10:00</td>
<td>ASH3</td>
<td>10:00</td>
<td>ASH4</td>
<td>10:00</td>
<td>ASH5</td>
<td>10:00</td>
<td>ASH6</td>
<td>10:00</td>
<td>ASH7</td>
<td>10:00</td>
<td>ASH8</td>
<td>10:00</td>
<td>ASH9</td>
<td>10:00</td>
</tr>
<tr>
<td>11:45</td>
<td>Lunch</td>
<td></td>
</tr>
<tr>
<td>12:00</td>
<td></td>
</tr>
<tr>
<td>13:00</td>
<td></td>
</tr>
<tr>
<td>14:00</td>
<td></td>
</tr>
<tr>
<td>15:00</td>
<td></td>
</tr>
<tr>
<td>16:00</td>
<td></td>
</tr>
<tr>
<td>17:00</td>
<td></td>
</tr>
<tr>
<td>18:00</td>
<td></td>
</tr>
<tr>
<td>19:00</td>
<td></td>
</tr>
<tr>
<td>20:00</td>
<td></td>
</tr>
</tbody>
</table>

Notes
- **ASHI**: American Society for Human Information Retrieval
- **CoMo**: Computational Mechanics Organization
- **T. Tsolakis**: WPI-OPHYS Professor
- **Y. Nomura**: Toshiba USA
- **R. Ito**: RIKEN
- **T. Onishi**: Tohoku University
- **K. Kurosawa**: University of Tokyo
- **S. Kagami**: University of Tokyo

Closing Remarks

11:00 PM
<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>LECTURER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overview of SR</td>
<td>Robert N. Lamb (Australian Synchrotron)</td>
</tr>
<tr>
<td>Light Source 182</td>
<td>Takashi Tanaka (RIKEN)</td>
</tr>
<tr>
<td>History of SR</td>
<td>Tairo Sasaki (Japan)</td>
</tr>
<tr>
<td>X-ray Monochromator</td>
<td>Shunji Goto (JASRI)</td>
</tr>
<tr>
<td>Mirror and Multi-layer</td>
<td>Christian Morawe (ESRF)</td>
</tr>
<tr>
<td>Micro-focusing Optics</td>
<td>Barry Lai (APS)</td>
</tr>
<tr>
<td>Next Generation Sources</td>
<td>Tsumoru Shintake (RIKEN)</td>
</tr>
<tr>
<td>Accelerator Physics (Linac)</td>
<td>Yujiro Ogawa (KEK)</td>
</tr>
<tr>
<td>Accelerator Physics (Ring)</td>
<td>Greg LeBlanc (Australia)</td>
</tr>
<tr>
<td>Diffraction and Scattering</td>
<td>Brendan Kennedy (Univ. of Sydney)</td>
</tr>
<tr>
<td>Powder Diffraction</td>
<td>Brendan Kennedy (Univ. of Sydney)</td>
</tr>
<tr>
<td>Photoemission(2): PEEM and nanoscience</td>
<td>Bruce Cowie (Australian Synchrotron)</td>
</tr>
<tr>
<td>Spectra-a: Synchrotron Radiation Calculation Code</td>
<td>Takashi Tanaka (RIKEN)</td>
</tr>
<tr>
<td>Inelastic X-ray Scattering</td>
<td>Erkan Alp (APS)</td>
</tr>
<tr>
<td>Protein crystallography</td>
<td>Soichi Wakatsuki (KEK)</td>
</tr>
<tr>
<td>Photoemission(1): Spectroscopy</td>
<td>Nobuhiro Kosugi (UVSOR)</td>
</tr>
<tr>
<td>VUV & X optics 1-2</td>
<td>Takeshi Namioke (Tohoku Univ.)</td>
</tr>
<tr>
<td>Detector</td>
<td>Chris Hall (Monash University)</td>
</tr>
<tr>
<td>Soft X-ray Absorption Spectroscopy and Resonant Scattering</td>
<td>Di-Jing Huang (NSRRC)</td>
</tr>
<tr>
<td>Imaging</td>
<td>Chris Hall (Monash University)</td>
</tr>
<tr>
<td>Small-angle Scattering</td>
<td>Moonbor Reu (PAL)</td>
</tr>
<tr>
<td>Atomic and Molecular Physics</td>
<td>Akira Yagishita (KEK)</td>
</tr>
<tr>
<td>EXAFS</td>
<td>Iwao Watanabe (Ritsumeikan Univ.)</td>
</tr>
<tr>
<td>Pump-Probe Experiment</td>
<td>Shin-ichi Adachi (KEK)</td>
</tr>
<tr>
<td>Industrial Applications</td>
<td>Norimasa Umesaki (JASRI)</td>
</tr>
<tr>
<td>X-ray Fluorescence Analysis</td>
<td>Atsuo lida (KEK)</td>
</tr>
<tr>
<td>LIGA</td>
<td>Linke Jian (SSL9)</td>
</tr>
<tr>
<td>High pressure/High temperature</td>
<td>Osamu Shimomura (KEK)</td>
</tr>
<tr>
<td>Infrared</td>
<td>Mark Tobin (Australia)</td>
</tr>
<tr>
<td>New Scientific Possibilities and Directions</td>
<td>Tetsuya Ishikawa (RIKEN)</td>
</tr>
</tbody>
</table>
BL Practices

<table>
<thead>
<tr>
<th>No.</th>
<th>BL Practice</th>
<th># of Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1:BL01B1 : XAFS measurement of dilute samples or thin films</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>2:BL02B1 : Polarization analysis</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>3:BL02B2 : Practical Training for Powder Diffraction Experiment at BL02B2</td>
<td>8</td>
</tr>
<tr>
<td>4</td>
<td>4:BL04B1 : In situ observation of high pressure phase change of simple material</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>5:BL04B2 : Disordered structure probed by high-energy x-ray diffraction technique</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>6:BL08W : Spin moment determination of ferro- or ferrimagnetic materials using magnetic Compton scattering</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>7:BL13XU : Training for surface x-ray diffraction measurements</td>
<td>5</td>
</tr>
<tr>
<td>8</td>
<td>8:BL14B2 : Building up an experimental station control software</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>9:BL17SU : Application of LEEM/PEEM at soft x-ray beamline BL17SU</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>10:BL19LXU : Pump and probe technique for picosecond time-resolved x-ray diffraction</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>11:BL25SU : Soft x-ray magnetic circular dichroism measurement and the related techniques</td>
<td>5</td>
</tr>
<tr>
<td>12</td>
<td>12:BL27SU : Soft x-ray photoemission and photoabsorption spectroscopy</td>
<td>2</td>
</tr>
<tr>
<td>13</td>
<td>13:BL28B2 : White X-ray diffraction topography at BL28B2</td>
<td>1</td>
</tr>
<tr>
<td>14</td>
<td>14:BL37XU : X-ray fluorescence analysis using microfocusing optics</td>
<td>2</td>
</tr>
<tr>
<td>15</td>
<td>15:BL38B1 : Data Collection and S-SAD Phasing of Insulin Crystals</td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>16:BL38B2 : Beam Diagnostics of the SPring-8 Storage Ring</td>
<td>5</td>
</tr>
<tr>
<td>17</td>
<td>17:BL39XU : Handling of X-ray polarization and application to X-ray magnetic circular dichroism spectroscopy</td>
<td>2</td>
</tr>
<tr>
<td>18</td>
<td>18:BL40XU : Instrumentation for small-angle scattering experiments</td>
<td>7</td>
</tr>
<tr>
<td>19</td>
<td>19:BL43IR : Microspectroscopy using infrared synchrotron radiation</td>
<td>3</td>
</tr>
<tr>
<td>20</td>
<td>20:BL47XU : Instrumentation for micro-tomography experiments</td>
<td>4</td>
</tr>
<tr>
<td>21</td>
<td>21:BL17SU : Evaluation of soft x-ray beamline</td>
<td>5</td>
</tr>
</tbody>
</table>
Cheiron School 2008
Beam Line Practice
SPring-8 site tour
List of “Meet the Expert”

<table>
<thead>
<tr>
<th>Classes for the Meet the Experts</th>
<th># of Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st DAY (September 11th)</td>
<td></td>
</tr>
<tr>
<td>Coherent diffractive imaging</td>
<td>3</td>
</tr>
<tr>
<td>Design of x-ray BL optics</td>
<td>10</td>
</tr>
<tr>
<td>Detector</td>
<td>2</td>
</tr>
<tr>
<td>Fluorescence analysis and imaging</td>
<td>7</td>
</tr>
<tr>
<td>Single-crystal X-ray Diffraction</td>
<td>10</td>
</tr>
<tr>
<td>SR-based Nanoscience</td>
<td>8</td>
</tr>
<tr>
<td>SX-MCD (Polarization measurement in soft X-ray)</td>
<td>3</td>
</tr>
<tr>
<td>Time-resolved Techniques</td>
<td>5</td>
</tr>
<tr>
<td>2nd DAY (September 14th)</td>
<td></td>
</tr>
<tr>
<td>Beam Diagnostics</td>
<td>2</td>
</tr>
<tr>
<td>BL Control</td>
<td>4</td>
</tr>
<tr>
<td>Design of soft x-ray BL optics</td>
<td>4</td>
</tr>
<tr>
<td>High-pressure Techniques (Sample Environment)</td>
<td>2</td>
</tr>
<tr>
<td>Inelastic X-ray Scattering</td>
<td>2</td>
</tr>
<tr>
<td>Medical imaging and therapy</td>
<td>3</td>
</tr>
<tr>
<td>non-crystalline x-ray diffraction</td>
<td>5</td>
</tr>
<tr>
<td>Powder X-ray Diffraction</td>
<td>7</td>
</tr>
<tr>
<td>Protein crystallography</td>
<td>5</td>
</tr>
<tr>
<td>Small-angle X-ray Scattering</td>
<td>4</td>
</tr>
<tr>
<td>Surface and Interface Diffraction</td>
<td>4</td>
</tr>
<tr>
<td>X-MCD (Phase-retarder for producing circularly polarized X-ray beams)</td>
<td>3</td>
</tr>
<tr>
<td>X-ray Imaging</td>
<td>4</td>
</tr>
</tbody>
</table>
Cheiron School 2008
pleasant time
In Kyoto
Questionnaire Survey

- Evaluate the 1st Cheiron school
- Reflect on designing of next Cheiron school
Cheiron School 2007 Survey Report

24 Respondents / 48 Participants

1. How did you know about the Cheiron School?
 - Supervisor
 - AOF Council Member
 - Poster
 - Spring-9 IP
 - Other
 - If other: From Head of Beamline Division

2. Which is the most appropriate schedule for opening the Cheiron School?

<table>
<thead>
<tr>
<th>Early August</th>
<th>Late August</th>
<th>Early September</th>
<th>Late September</th>
<th>Early October</th>
<th>Late October</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2</td>
<td>10</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>

3. What do you think about the 11 days / 10 nights school schedule?
 - Perfect
 - About right
 - Too short
 - Too long
 - 7
 - 11
 - 4
 - 2

4. Please rank the TOP 3 Best Lecturers from the Lecturers List.
 - Light Source: Tatsuo Tatsuno (RIKEN)
 - Next Generation Source: Tatsuo Tatsuno (RIKEN)
 - The most passionate lecturer and I think the source is the most important.
 - More interesting to develop new light source.
 - Impressive lecture about the future generation of x-ray sources.
 - Passionate about science, inspiring and motivating.
 - Excited about his work with the FEL, a very engaging speaker who also made his audience feel excited about future directions of synchrotron research.

- Light Source 1-2: Takashi Tanaka (RIKEN)
 - Topic was good, and preparation of lecture seems to be excellent.
 - Very nice lectures for understanding the characteristics of 3rd generation synchrotron radiation.

- EXAFS/Wataniwa (Ritsumeikan Univ)
 - Unfamiliar subject, but easy to understand.
 - This lecture include large research field and have more application.

- Diffraction and Scattering: Brendan Kennedy (Univ. of Sydney)
 - Good lecture notes and detailed analytical treatment of subject.
 - My research field is X-ray multiple diffraction. So it's familiar with me.
 - Teach with energy, stimulate thinking, expressive, lively, clear lectures.
 - He made materials accessible for all the students with different backgrounds.

- Very clear lecture notes and easy to understand explanations during his talk. He was able to make all the content easily understood by those in other fields and interested in those in his own field.

- New Scientific Possibilities and Directions: Tetsuya Hisakawa (RIKEN)
 - An innovative way of presenting lecture.
 - A wonderful and interesting lecture which inspires our enthusiasm to sciences.

- Infrared/Mark Tobin (Australian Synchrotron)
 - I went to this talk knowing little about the subject and left the talk with a design for an experiment for my project.

- Small-angle Scattering/Moonhoi Kee (PALL)
 - My favorite theme, and various experimental results of leading group.
 - This is one of the most widely used techniques using synchrotron source. The lecture was so nice and we could understand it in a very lucid manner.

- Overview of SR/Robert Norman Lamb (Univ. of Melbourne)
 - I think it is possible to see all of the SR, and the lecture is so interesting.
 - The way he presented was quite easy to understand. In addition, it was very nice that he encouraged us to participate in the lecture.

- Pump-Probe Experiment/Shin-ichi Adachi (KEK)
 - I am interested in this topic. Because I want to combine this technique with my research.
 - This lecture provided me a new perspective insight into the world.
 - It's interesting and my BS practice is like this topic.

- Soft X-ray Absorption Spectroscopy and Resonant Scattering/Di-Rong Huang (NSRRC)
 - Two kind of the research field maybe need two lectures.

- Laser/ Suzuki: Juri (ILSL)
 - Prof. Suzuki's lecture is very clarity, and matched with an logical presentation.

- X-ray Monochromator/Shinji Goto (JASRI)
 - Really interesting lecture to discover the hidden side of beamlines and to understand the basic operation of a beamline.

- Imaging/Chris Hall (Monash University)
 - It was very interesting to see a different use of synchrotron source other than crystallography.

- Inelastic X-ray Scattering/Ercan Alp (APS)
 - The content were very appropriate to my interests.
 - Although Inelastic Scattering is very wide topic, Dr. Alp presented the lecture in a nice way to cover many things. He started the lecture from the very fundamentals and gave a deep insight.
 - Even though he had too many slides to fit in the duration of a lecture, his presentation was well-organized.

- Very enthusiastic about his work and eager to share this with the students. Obviously has a wealth of experiences to share. He was also keen to talk to students afterwards about their own works.
The experts were very well qualified and eager to share their knowledge with students. It was good being in a smaller group as this enabled more questions and closer discussion with the experts. It was also interesting to see the beamlines at which they work and to hear about work done in their field.

- VUV & SX Optics 1-2/Takashi Namioka (Tohoku Univ.)
 - This is what exactly relevant with my present work as I am involved in designing a soft X-ray beamline. I had read many papers of Prof. Namioka. Directly listening to his lecture was really great.

5. How would you rate the competence of the lecturers?
 Outstanding | Good | Adequate | Need improvement | Poor
 9 | 12 | 2 | 1 | 0

6. How was your understanding through the whole lectures?
 Very easy | Easy | About right | Difficult | Very difficult
 1 | 4 | 15 | 2 | 2

7. How would you rate your satisfaction with the whole lectures?
 Excellent | Very good | Good | Fair | Poor
 9 | 8 | 6 | 1 | 0

8. Please share any additional comments regarding the lectures or the curriculum.
 - It was very good, but some lectures seem to be a little bit lack of preparation.
 - I like the way that lectures were well planned. A gap after two days of lectures was a very good idea. Also visit to various facilities very well organized.
 - For several lectures we were taught content which had been covered in an earlier lecture. For the basic concepts this isn’t fine, as it is quick and important, but for the complicated material time was wasted in the repeat explanation and meant that different material was not covered.
 - The lectures are very good, but some of lecturers may need more communication with students.
 - I think the time of each class is a little long. Maybe 50 minutes is better for me. Because I can’t focus on the topic whole all time.
 - All lectures was excellent. Please increase the no. of days to avoid parallel session.
 - The lecture time maybe decrease to 60 min is better.
 - Some of the lectures are very absorbing and led you to a completely new and novel world, and what you need to do is just open your mind to accept them.
 - Lectures were really interesting and cover a large field of research which give a good idea of what can be achieved using synchrotron radiation.
 - The curriculum was very nice for the learning about the various approaches to each science with synchrotron radiations.
 - In my opinion the curriculum was very well planned, but the lectures were a bit heavy (too much giving the overview of various optical elements for synchrotron beamlines).
 - There should be one more lecture for Soft X-ray monochromators. Namioka’s lecture gives very fundamentals in ray tracing point of view. So some advanced detailed lecture for soft X-ray monochromators is necessary.
 - Everything is ok, but I prefer if you added more course e.g. some application.
 - One should consider to split the lectures into two session: 1) for "machine people" (accelerator physics, light source, ...) and 2) users (diffraction, scattering, ...). This would provide the possibility to deepen the corresponding lectures and give additional time for more beamline practice.
 - The environment is comfortable for me. But I think sometimes the lectures of one day are too much.
 - Very good topics and lecturers. The number of topics is appropriate.
 - I wonder if it is necessary to have a lecture on "SPECTRA". And may be it is better to make lectures on some specific characterizing a choice for students, but with general ones made compulsory.
 - Some lectures are too difficult to understand for such a diverse audience with different backgrounds. I believe the general understanding of each field should be emphasized over the understanding of details in the lectures presented for every participant.
 - The lectures were well designed as a sequence, covering both the machine side and applications of synchrotron light. The lectures were all very qualified and could answer any question about any detail of their topic. It was difficult to choose only three as the best lectures!

9. How would you rate the competence of your Experts?
 Outstanding | Good | Adequate | Need improvement | Poor
 11 | 7 | 6 | 0 | 0

10. How would you rate your satisfaction with your Experts?
 Excellent | Very good | Good | Fair | Poor
 10 | 6 | 3 | 0 | 0

11. Please share any additional comments regarding the Meet the Experts.
 - It was good, but I think that preparation at beamline was not adequate. Maybe it needs to be more systematized.
 - I would like to say that a little more time should be provided in this section. May be every alternative day one meet the expert session in evening.
 - Please increase the time for meet the experts full day.
 - I got the deep impression of the imaging facility through visiting to the hatch and being instructed by the expert.
 - The meeting session with the experts helped to understand the details about beamline specification and
I believe this type of practice is most is most helpful for our understanding. I hope we had more time for BL practice.

The beamline practical was a good chance to pick up new skills and to increase my confidence in planning my own experiments. I appreciated the opportunity to help with setting up equipment as is usually only done by a beamline scientist. It was also a rare opportunity to gain exposure to different beamlines and experiments to those which I would normally be involved in. This was a valuable opportunity to talk with other students who had chosen the same BL practice, hence were in similar fields to my own.

<table>
<thead>
<tr>
<th>Outstanding</th>
<th>Good</th>
<th>Adequate</th>
<th>Need improvement</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

13. How was your understanding regarding the BL practical?
- Very easy
- About right
- Very difficult
- 5
- 9
- 8
- 2
- 0

14. How would you rate your satisfaction with the BL practical?
- Excellent
- Very good
- Good
- Fair
- Poor
- 16
- 3
- 5
- 8
- 0

15. Please share any additional comments regarding the BL practical.
- Maybe there were some people who cannot get chance to do BL practice at desired BLs.
- Instead of two full days for two experiments, one full day for one experiment (candidates field of research) plus two half day experiments will be good idea. This way candidate have more exposure to various techniques.
- I think the BL practical is the most beneficial for me among various classes. Also, the future user can do training enough.
- I have selected "Pump and probe technique for picosecond time-resolved x-ray diffraction". This experiment make my though more clear to design a dynamic reaction experiment, that is what I want to do in the future.
- BL practical was excellent and well organized.
- I had learned the experiment in the beamline with the instruction of the experts working at the beam-line.
- I think those beamline practice are a really good idea and give the opportunity to actually see in real condition all the things learned during the lectures.

16. Please share any comments regarding the site tour. (SPRING-8/SCSS/New SUBARU)
- It was good, but I think that more time should be spent with site tour in order to get more understanding about that.
- The site tour was well planned and executed. I think I don't need to say about site they all are world class facilities.
- I am curious at the SCSS, but I am still not sure how does it work!
- Site tour to SPRING-8/SCSS/New SUBARU was excellent and well organized. Please organize a tour for storage ring of SPRING-8 booster, Linac also.
- The SPRING-8 is too large, maybe need more time to know. Such as protein beamline group, scattering beamline group and absorption beamline group will be better.
- Very novel and interesting tours, and I could get a knowledge of the development of the SPRING-8.
- Very educational and interesting for people who discover synchrotron facilities.
- The site tours were good chances for notifying the present and future works using synchrotron radiation.
- SPRING-8 and SCSS were both very interesting, but I didn't like the New SUBARU tour very much (I think I was a bit tired)
- I saw many instruments I don't understand before. Although I still confuse about these. But I feel eye-opening.
- Very interested places and more advantages for sciences and industrials.
- Site tours were quite nice. I liked to visit the XFEL prototype.
- The site tour was wonderful, particularly given that the synchrotron was in shut-down, enabling us to see into all the open hutchens and learn about the different equipment inside. The tour guides were very
18. Please share any additional comments or suggestions regarding the Cheiron School.

- Overall I would say that Cheiron School 2007 was very well planned and organized. Topic of lectures were excellent with wide area of synchrotron radiation research covered. It will definitely provide good exposure to new researcher in this area. Finally I would say that please keep doing this good work. Thank You for your hospitality.

- Excellent. Should be repeated annually indefinitely. I think that Cheiron School showed us many things. First of all, the scale of equipment is so huge. Second, all attendants is so moved by the consideration of detailed optics and designing procedures. If the 11 days period is not sufficient, the period should be extended.

- I think the summer school is good. Schedule of classes is a little tight for me.

- This School is very informative, perfectly planned and well organized. Please increase the no. of days to avoid parallel session and meet the expert’s full day.
Cheiron School will promote a concrete “people-to-people” network in Asian/Oceania synchrotron radiation community.