

Extending Storage Ring Beam Performance

K. Soutome (JASRI/SPring-8)

on behalf of JASRI Accelerator Division

Topics:
1) Lower Emittance in Low-Energy (4GeV) Operation
2) Shorter Bunch Length in Low-Alpha Operation

Low-Energy Operation

SPring. 8

Emittance: $\varepsilon \propto E^2$ 3.4 nmrad at 8GeV \rightarrow 0.85 nmrad at 4GeV

Other ParametersRadiation Loss: U ∝ E4Damping Time: $\tau_{x,y,s} \propto E^{-3} \rightarrow Instability$ Energy Spread: $\sigma_{\Delta p/p} \propto E$ Bunch Length: $\sigma \propto E^{3/2}$ (V_{rf}: fixed) $\propto E^{-1/2}$ (q: fixed, q=V_{rf}/U)Synchrotron Frequency: f_s $\propto E^{-1/2}$ (V_{rf}: fixed) $\propto E^{3/2}$ (q: fixed)

Low-E: Intrabeam Scattering Effect

SPring. 8

 \rightarrow Preliminary target energy was set to be 4GeV.

Low-E: Beam Size at 4GeV

Measurement:

SPring. 8

X-Ray Beam Imager (Fresnel Zone Plate + X-ray Zooming Tube) in Diagnostic Bending BL

E [GeV]	σ _x ^(exp) [μm]	σ _x ^(cal) [μm]
8	110	114
4	57	57

Low-E: Beam Size at 4GeV

Measurement:

SPring. 8

X-Ray Beam Imager (Fresnel Zone Plate + X-ray Zooming Tube) in Diagnostic Bending BL

Low-E: Bunch Length

Low-E: Summary

- * Emittance of 0.85 nmrad was achieved at low current in 4GeV operation.
- * Intrabeam scattering affects the emittance and bunch length.

 \rightarrow This can be relaxed by coupling control.

- * Longitudinal instability was observed above 20mA at 4GeV.
 - \rightarrow This was cured by RF voltage modulation by f_{rev}. (T.Nakamura)
- * Possibility of higher beam current at 4GeV.

SPring. 8

* Possibility of high-brilliance Soft X-ray BL, though beamlines are currently optimized to 8GeV operation.

Low-Alpha Operation

$$\Delta f_{rf} / f_{rf} = -\alpha \delta$$

$$\delta = \Delta p / p$$

$$\alpha = \alpha_0 + \alpha_1 \delta + \alpha_2 \delta^2 + \alpha_3 \delta^3 + \dots$$

Perturbative Formula: H.Tanaka, et al., NIMA431 (1999) 396 Erratum: NIMA440 (2000) 259

Bunch length scales as $\alpha^{1/2}$ at low bunch curent.

<u>Main Knob to Control α </u>

SPring. 8

 α_0 : Quadrupoles in the arc

(Betatron tune is adjusted with other quadrupoles.)

 α_1 : Sextupoles in the arc

(Chromaticity is adjusted with other sextupoles.)

α₂: Octupoles in the arc (*no octupoles at present*)
 (This term is important in extremely low-alpha regime.)

Low- α **: Optics**

$$\alpha_0^{(\text{nominal})} = 1.68 \text{ e-4}$$

 $\epsilon = 3.4 \text{ nmrad}$
 $(v_x, v_y) = (40.15, 18.35)$

Low-α: Bunch Length vs Current

SPring. 8

Measurement: Streak Camera (Hamamatsu C5680)

2.5ps Error Assumed (estimated by measuring bunch length as a function of synchrotron frequency)

Low- α : Bunch Length vs α_0

SPring. 8

NB: Measured bunch length is slightly shorter than calculation. \rightarrow Calibration of streak camera with a beam is planned.

Low-α: "Alpha-Bucket"

Beam lifetime was short at $\alpha_0 = 5.8e-6$.

Possible Reason:

SPring. 8

(1) Control of α_1 was not perfect in the experiment and the

acceptance was small. (\rightarrow Check df_{sv}/df_{rf} = 0.)

(2) Control of α_2 will be effective (needed for smaller α_0).

Low-\alpha: Control of \alpha_2

Install octupoles to control α_2 (or operate with $\alpha_0 < 0$).

Low-\alpha: Control of \alpha_2

SPring. 8

Install octupoles to control α_2 (or operate with $\alpha_0 < 0$).

Low-*α***: Further Reduction?**

Further Reduction Beyond a Few ps ?

 \rightarrow Current must be low anyway.

Combination with ...

- * 4 GeV Operation
 - \rightarrow factor 1/3 naively
- * Damping Partition Control
- * Higher RF Voltage
- * RF Voltage or Phase Modulation (Bunch Length Modulation at kHz)

Low-α: Further Reduction?

Further Reduction Beyond a Few ps ?

 \rightarrow Current must be low anyway.

Combination with ...

SPring. 8

- * 4 GeV Operation
 - \rightarrow factor 1/3 naively
- * Damping Partition Control
- * Higher RF Voltage
- * RF Voltage or Phase Modulation (Bunch Length Modulation at kHz)

Other Approaches

- * Bunch Deflection with Crab Cavities
- * Bunch Deflection by Dipole Kick (W.Guo) (Short X-Ray Pulses at kHz)

Low-α: Summary

- * The first order term α_0 was reduced by 1/29 in machine study.
- * RMS bunch length of about 2ps was achieved at 0.01mA.
- * Control of α_1 was done but not perfect. ... to be improved
- * Control of α_2 is important in extremely low- α_0 regime. ... Installation of octupole magnets (or negative- α_0 operation) is under consideration.
- * Plan (dream?) to reduce α_0 by 1/129.

- * **Reproducibility** of optics should be checked.
- * Shorter bunch below 1ps is very difficult. Combination with other methods like RF modulation ?

Bunch Deflection by Dipole Kick (W.Guo)

SPring. 8

Simulation with Chromaticity $(\xi_x, \xi_y) = (+2, +2), \kappa = 0.1\%$ Vertical Kick with 1mm Oscillation Amplitude

