
Advanced Photon Source

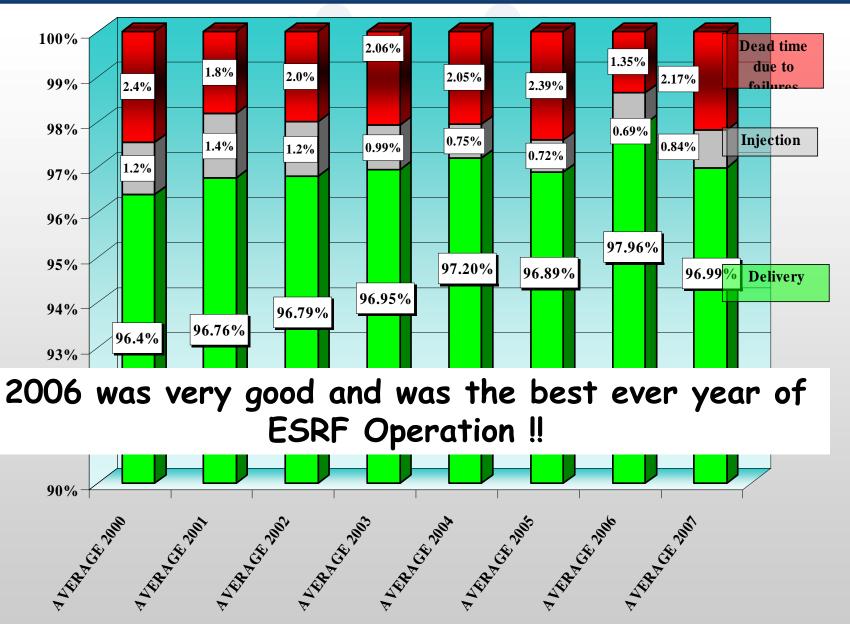
ESRF: Accelerator Operation and Stability

Jean-Luc Revol

On behalf of the Accelerator and Source Division

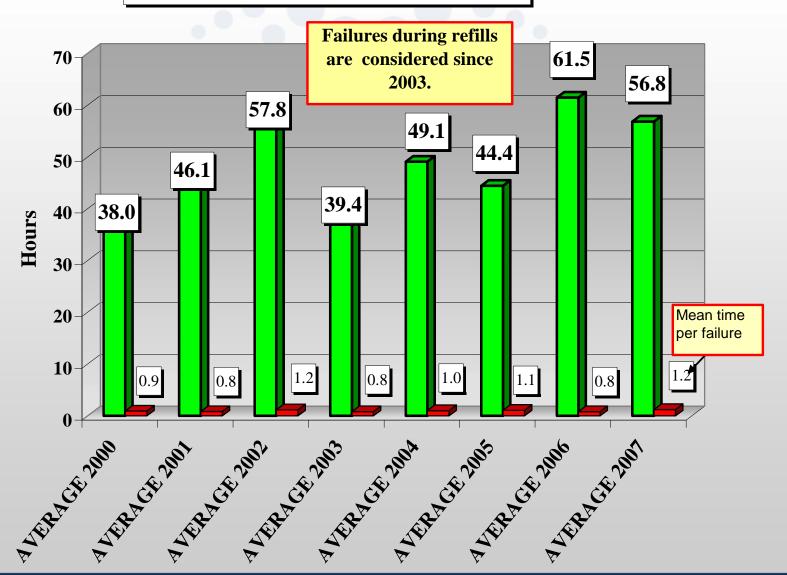
ESRF, SPring-8, APS Three-Way Meeting (3WM08) Argonne National Laboratory *March 17-19, 2008*

- 1. Statistics
- 2. Main difficulties in 2007
- 3. MDT developments linked to operation
- 4. Filling pattern evolution
- 5. Stability
- 6. Control system
- 7. Electronic Logbook



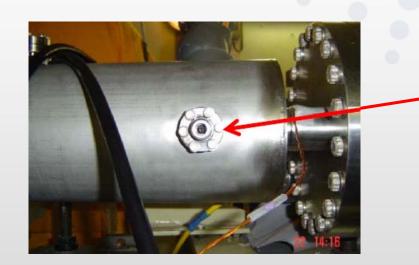
Statistics for 2005-2007

	2005	2006	2007
Xray source availability (%)	97.6	98.7	<mark>97.8</mark>
Mean time between failures	44.4	61.5	<mark>56.8</mark>
Mean duration of a failure (hrs)	1.1	0.8	1.24
Number of failures	123	85	96
Time lost in hours	131	71	114
Accelerator downtime	2.4%	1.3%	2.1%
	Lowest	figure achieved since the start of the ESRF	



Statistics overview

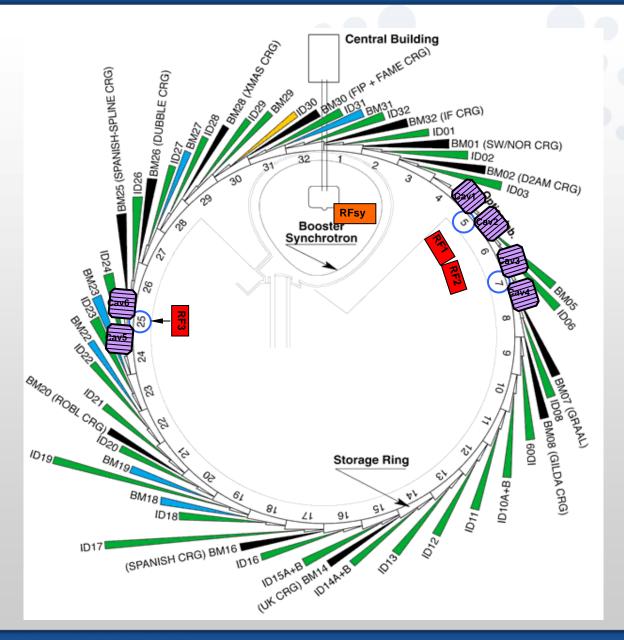
Mean Time Between Failures over the years


The main reasons for downtime in 2007:

Events influencing <u>AVAILABILITY</u>	Events influencing <u>MTBF</u>
11 failures > 2 hours	97 failures < 1 hour
 Stripline Cell 4 (July 2007)	- SRRF : 21
(27 USM hours) Default on 24 V PS on RF HIS	- HQPS / Mains: 13
inducing wrong interlocks (5 hrs)	- Human Mistakes : 10 !
Events influencing both	Significant Events influencing <u>or not</u>
MTBF and AVAILABILITY	Beam Quality Delivery
 Absence of HQPS → Drops on electrical mains: 22.5 hours lost for 22 failures !!! 	 Leak on SRRF cavity 5 Defective RF finger cavity 3 → reduced intensity in 16 bunch

Failure of the horizontal stripline

End of run 3 in July


Fire alarm and broken feed through on the horizontal stripline in cell4

Repaired but end of the run cancelled: a total of 75 hours lost but 27 hours "only" in USM since 2 USM days were given back to Users

Due to high peak power induced in 4 x 10 mA and 16 bunch operation

New design installed in October shutdown with low pass filter in the gap reduced voltage

8 RF copper cavities

2 cavities in booster

6 cavities in the storage ring

3 straight sections (5metres) occupied in the storage ring

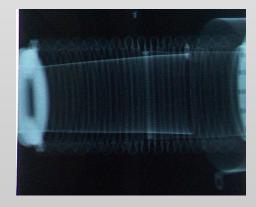
➔ No major difficulties since 1992

What affected 2007 ?

Restart of June 2007

Leak on <u>cavity 5</u> tuner port 2

Induced by a problem of welding on the port of the piston tuner during manufacturing in 1997 → problem appeared 10 years later.

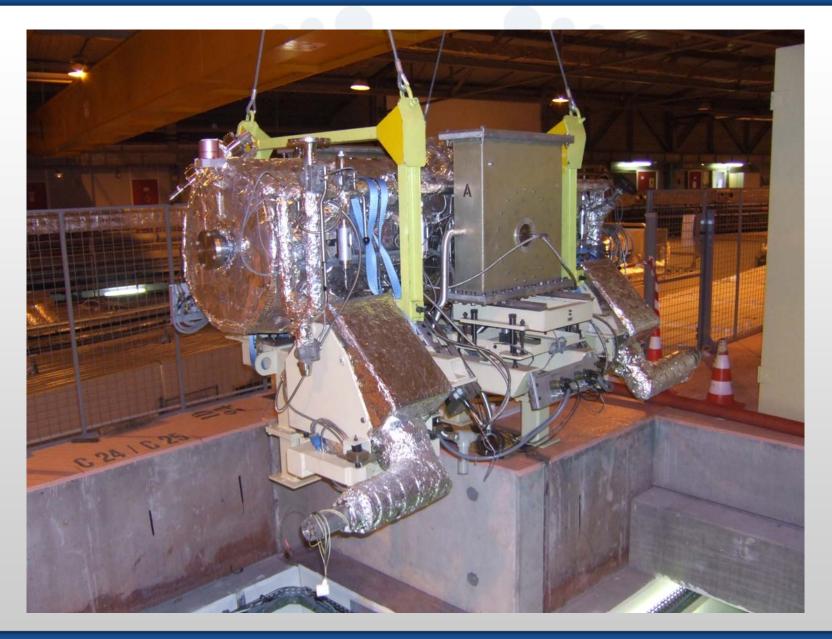


September 2007

Strong outgassing in the <u>bellow</u> adjacent to cavity 3 from a defective RF finger in 16 Bunch

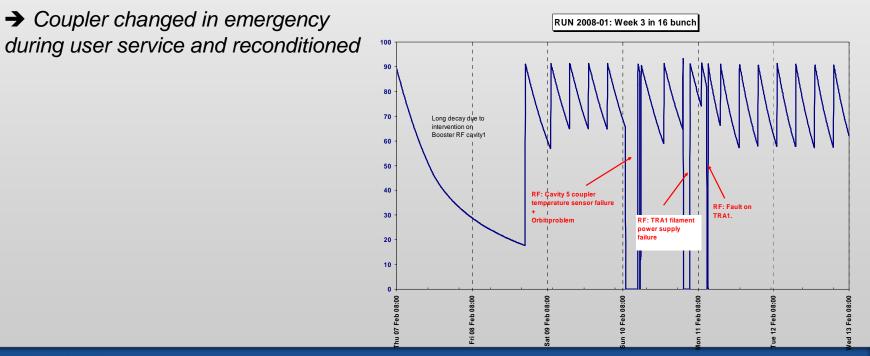
Current limited to 70 mA

Operation without cavity 5 for 6 months



- **DECISION**: no further risk for operation \rightarrow stop powering Cavity 5
- **11th June:** start of the run without TRA3 / Cav 5&6
 - Fall back RF working point for 200 mA:
 - HOM detuning not perfectly reliable \Rightarrow 2/3 filling for Landau damping
- **19th June MDT:** Implement operation with 5 cavities
 - Disconnect leaky cavity 5, tuners on parking position
 - Setup operation at 200 mA including HOM detuning
 - Successfully applied at 200 mA until Christmas shut down
- Existing **spare Cavity prepared** to replace Cavity 5 during Christmas shut down
 - Baked * RF conditioned on RF power teststand using TRA2
- Winter shutdown:
 - Replace RF fingers upstream and downstream pair cavity3&4
 Cavities carefully vented, baked out
 - Replace cavity5 and baked out
 - Winter shutdown shortened by 3 days for RF conditioning and beam restart
- January restart:
 - No major difficulties to restart beam
 - But slow vacuum conditioning
 - After restart, still strong vacuum out gassing depending of the working points
 need more RF conditioning

Replacement cavity 5



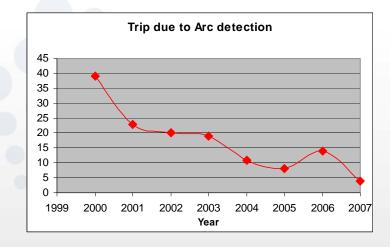
Fall 2007, air leak appears on a small pick up feed through used for measurement

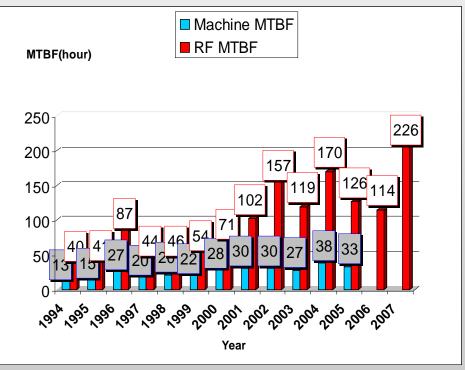
- Cavity 1&2 put to atmospheric pressure during winter shutdown
 - → Feed through replaced and cavity reconditioned
- Then a leak took place in the RF coupler

→ Coupler changed at the end of the shutdown and reconditioned

• 2 weeks after the restart again a leak on the exchanged coupler

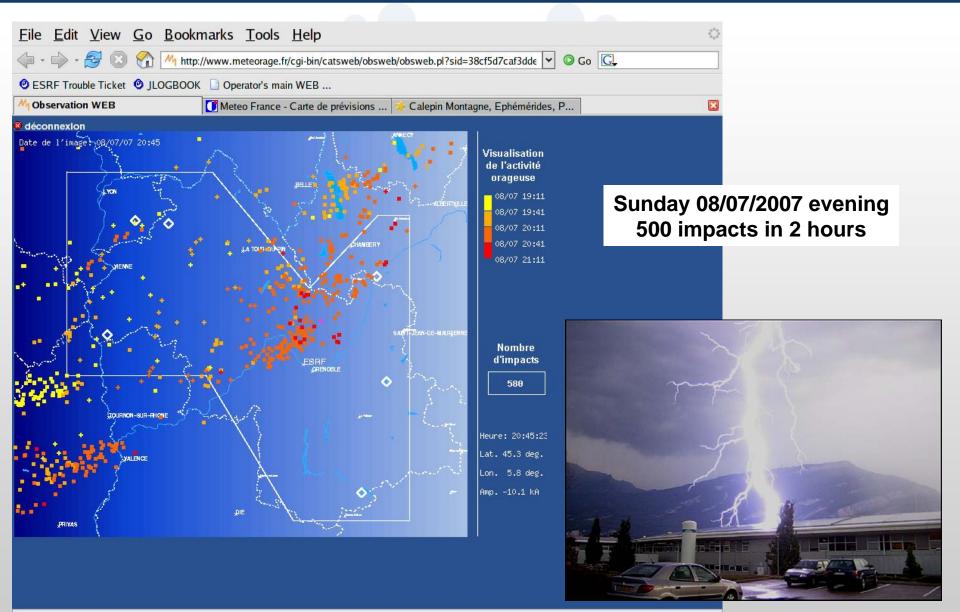
352.2 MHz RF system / Operation 2007


Record RF-MTBF in 2007:


Only 24 RF trips, despite severe cavity vacuum problems

- Low Level RF: 0 trip @ benefit from preventive maintenance
- Klystrons: 4 trips @ instabilities &Vacuum interlocks
- Klystron auxiliaries: 2 trips
- HVPS: 1 trip @ crowbar due to thunderstorm
- Arcs: only 4 trips

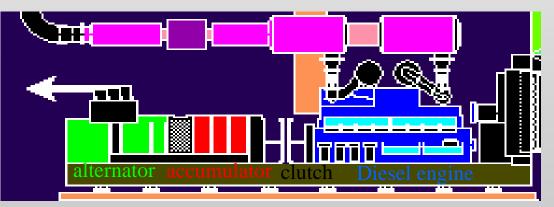
noise floor


- Control: 2 trips @ 1 unexplained driver disable by PLC, 1 circ. Load interlock wrongly cabled on cavity interlock chain
- Cavity 5: 1 break down
- Other cavities: 10 trips @ breakdowns (Cav 1 & 3), overvoltage (Cav 4)

Storm activity

Storm activity

RUN 2007- 03: Week 4 in hybrid 24*8+1 filling mode



• The **HQPS1 system** run with difficulties its last months of operation.

→ The stop took place in September 2007.

- The arrangement of an accumulator with a diesel engine through an electro-magnetic clutch is the origin of our problems. Suppressing the clutches and the diesel engines is the way to resolve this situation safely
- → 8 units over 10 were sold
 → Unit 2 kept to avoid any lack of evidence in the damages for the legal case.

➔ Unit 1 refurbished to protect ESRF accelerators during long cuts linked to the HQPS2 system

HQPS1 was divided into 10 units of ~ 1 MVA

<u>Origin of the problem:</u> Magnetic field leakage at the clutch location inducing eddy currents in the crankshaft and in bearings

The Beam Losses due to the absence of HQPS + Mains drop

Jan 2007	Feb 2007	Mar 2007	Apr 2007	May 2007	Jun 2007	Jul 2007	Aug 2007	Sep 2007	Oct 2007	Nov 2007	Dec 2007	Jan 2008
Mon 01 s s s	Thu 01	Thu 01	Sun 01 M M M	Tue 01 M M M	Fri 01 s s s	Sun 01	Wed 01 s s s	Sat 1	Mon 01	Thu 01	Sat 01	Tue 01 s s s
Tue 02 s s s	Fri 02	Fri 02	Mon 02 M M M	Wed 02	Sat 02 s s s	Mon 02	Thu 02 s s s	Sun 2	Tue 02 M M M	Fri 02	Sun 02	Wed 02 s s s
Wed 03 s s s	Sat 03	Sat 03	Tue 03	Thu 03	Sun 03 s s s	Tue 03 M M M	Fri 03 s s s	Mon 3	Wed 03	Sat 03	Mon 03	Thu 03 s s s
Thu 04 s s s	Sun 04	Sun 04	Wed 04	Fri 04	Mon 04 s s s	Wed 04	Sat 04 s s s	Tue <mark>(</mark> 4	Thu 04	Sun 04	Tue 04	Fri 04 s s s
Fri 05 s s s	Mon 05	Mon 05	Thu 05	Sat 05	Tue 05 s s s	Thu 05	Sun 05 s s s	Wed 5 M M M	Fri 05	Mon 05	Wed 05	Sat 05 s s s
Sat 06 s s s	Tue 06 M M M	Tue 06 M M M	Fri 06	Sun 06	Wed 06 s s s	Fri 06	Mon 06 s s s	Thu <mark>6</mark>	Sat 06	Tue 06 M M M	Thu 06	Sun 06 s s s
Sun 07 s s s	Wed 07 M M M	Wed 07	Sat 07	Mon 07	Thu 07 s s s	Sat 07	Tue 07 s s s	Fri (7	Sun 07	Wed 07	Fri 07	Mon 07 s s s
Mon 08 s s s	Thu 08	Thu 08	Sun 08	Tue 08 M M M	Fri 08 <mark>start-</mark>	Sun 08	Wed 08 s s s	Sat (<mark>8</mark>	Mon 08	Thu 08	Sat 08	Tue 08 s s s
Tue 09 s s s	Fri 09	Fri 09	Mon 09	Wed 09	Sat 09 M M M	Mon 09	Thu 09 s s s	Sun (<mark>9</mark>	Tue 09 M M M	Fri 09	Sun 09	Wed 09 s s s
Wed 10 s s s	Sat 10	Sat 10	Tue 10 M M M	Thu 10	Sun 10 M M M	Tue 10 M M M	Fri 10 s s s	Mon 0	Wed 10	Sat 10	Mon 10	Thu 10 s s s
Thu 11 s s s	Sun 11	Sun 11	Wed 11	Fri 11	Mon 11 M M M	Wed 11	Sat 11 s s s	Tue 1	Thu 11	Sun 11	Tue 11 M M M	Fri 11 s s s
Fri 12 s s s	Mon 12	Mon 12	Thu 12	Sat 12	Tue 12	Thu 12	Sun 12 s s s	Wed 2	Fri 12	Mon 12	Wed 12	Sat 12 s s s
Sat 13 s s s	Tue 13 M M M	Tue 13 M M M	Fri 13	Sun 13	Wed 13	Fri 13	Mon 13 s s s	Thu <mark>3</mark>	Sat 13	Tue 13 M M M	Thu 13	Sun 13 s s s
Sun 14 s s s	Wed 14	Wed 14	Sat 14	Mon 14	Thu 14	Sat 14	Tue 14 s s s	Fri <mark>4</mark>	Sun 14	Wed 14	Fri 14	Mon 14 s s s
Mon 15 s s s	Thu 15	Thu 15	Sun 15	Tue 15 M M M	Fri 15	Sun 15	Wed 15 s s s	Sat <mark>5</mark>	Mon 15	Thu 15	Sat 15	Tue 15 s s s
Tue 16 s s s	Fri 16	Fri 16	Mon 16	Wed 16	Sat 16	Mon 16	Thu 16 s s s	Sun <mark>6</mark>	Tue 16	Fri 16	Sun 16	Wed 16 s s s
Wed 17 s s s	Sat 17	Sat 17	Tue 17 M M M	Thu 17	Sun 17	Tue 17 M M M	Fri 17 <mark>start-</mark>	Mon 7	Wed 17 s s s	Sat 17	Mon 17 s s s	Thu 17 s s s
Thu 18 s s s	Sun 18	Sun 18	Wed 18	Fri 18	Mon 18	Wed 18	Sat 18 M M M	Tue 8 M M M	Thu 18 s s s	Sun 18	Tue 18 s s s	Fri 18 M M M
Fri 19 <mark>start-up</mark>	Mon 19	Mon 19	Thu 19	Sat 19	Tue 19 M M M	Thu 19	Sun 19 M M M	Wed 9	Fri 19 s s s	Mon 19	Wed 19 s s s	Sat 19 M M M
Sat 20 M M M	1 Tue 20 M M M	Tue 20	Fri 20	Sun 20	Wed 20	Fri 20	Mon 20 M M M	Thu 20	Sat 20 s s s	Tue 20 M M M	Thu 20 s s s	Sun 20 M M M
Sun 21 M M M	1 Wed 21	Wed 21 s s s	Sat 21	Mon 21	Thu 21	Sat 21	Tue 21	Fri 21	Sun 21 s s s	Wed 21	Fri 21 s s s	Mon 21 M M M
Mon 22 M M M	1 Thu 22	Thu 22 s s s	Sun 22	Tue 22 M M M	Fri 22	Sun 22	Wed 22	Sat 22	Mon 22 s s s	Thu 22	Sat 22 s s s	Tue 22
Tue 23	Fri 23	Fri 23 s s s	Mon 23	Wed 23	Sat 23	Mon 23	Thu 23	Sun 23	Tue 23 s s s	Fri 23	Sun 23 s s s	Wed 23
Wed 24	Sat 24	Sat 24 s s s	Tue 24 M M M	Thu 24	Sun 24	Tue 24	Fri 24	Mon 24	Wed 24 s s s	Sat 2 <mark>4</mark>	Mon 24 s s s	Thu 24
Thu 25	Sun 25	Sun 25 s s s	Wed 25	Fri 25	Mon 25	Wed 25 s s s	Sat 25	Tue 25 M M M		Sun 25	Tue 25 s s s	Fri 25
Fri 26	Mon 26	Mon 26 s s s	Thu 26	Sat 26	Tue 26 M M M	Thu 26 s s s	Sun 26	Wed 26	Fri 26 start-	Mon 26	Wed 26 s s s	Sat 26
Sat 27	Tue 27	Tue 27 s s s	Fri 27	Sun 27	Wed 27	Fri 27 s s s	Mon 27	Thu 27	Sat 27 M M M		Thu 27 s s s	Sun 27
Sun 28	Wed 28 M M M	Wed 28 s s s	Sat 28	Mon 28	Thu 28	Sat 28 s s s	Tue 28 M M M	Fri 28	Sun 28 M M M		Fri 28 s s s	Mon 28
Mon 29		Thu 29 s s s	Sun 29	Tue 29	Fri 29	Sun 29 s s s	Wed 29	Sat 29	Mon 29 M M M		Sat 29 s s s	Tue 29 M M M
Tue 30 M M M	1	Fri 30 <mark>start-</mark>	Mon 30	Wed 30 s s s	Sat 30	Mon 30 s s s	Thu 30	Sun 3 <mark>0</mark>	Tue 30	Fri 30	Sun 30 s s s	Wed 30
Wed 31		Sat 31 M M M		Thu 31 s s s		Tue 31 s s s	Fri 31		Wed 31		Mon 31 s s s	Thu 31

22 Failures

HQPS officially stopped

Total Time Lost: 22.6 hours

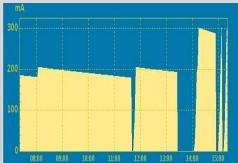
HQPS 2 is starting

- Build a system of 14 units able to sustain 9.3MW during 12 seconds
- Reduced coverage of the protection (no permanent protection of the beam).
 The electrical part will have to cover 3 multiple drops of less than 3 seconds.
- "Long cuts" above 3 sec are guarantied by the public body not to append more than twice a year.
 - critical equipment powered by a genset (the old KS1 from HQPS1 refurbished 1MW power is needed after a beam dump).
- Installation finished mars 2008.
- Individual tests unit by unit: April 2008
- Site acceptance tests : May and June 2008.
- HQPS2 ready : summer 2008

Good weeks !!

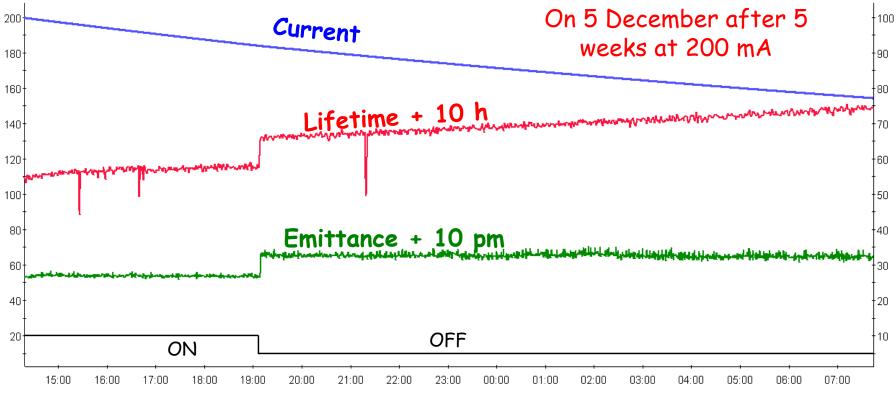
Year 2007				
Run number	Week number	Hours of beam delivery without a single failure		
Run 2007-01	Week 2	100		RUN 2007-04: Week 2 in 7/8 + 1 filling mode
	Week 3	96		
	Week 4	92	250 ⊤	
	Week 6	97		168 hours without a failure
	Week 8	144		
Run 2007-02	Week 1	126	200 -	
	Week 2	74		
	Week 3	131		$X = \{ \{ X \mid X \mid$
	Week 5	144		
	Week 6	125	150 -	
	Week 8	108		
Run 2007-03	Week 1	168		
	Week 2	102	100	
	Week 3	144	100 -	In 2007 we saw 22 periods of
	Week 4	90		
	Week 6	92		more than 74 hours of delivery
Run 2007-04	Week 2	168	50 -	without a single hitch !!
	Week 3	114		
	Week 4	89		
	Week 7	94		
Run 2007-05	Week 3	109	A ug 08:00	hu 30 Aug 08:00 Fri 31 Aug 08:00 at 01 Sep 08:00 un 02 Sep 08:00 on 03 Sep 08:00 ue 04 Sep 08:00
	Week 6	86	A u a	A A A A A A A A A A A A A A A A A A A
			Wed 29	Thu 30 Fri 31 Sat 01 Sun 02 Sun 02 Mon 03 Mon 03 Wed 05

300 mA operation



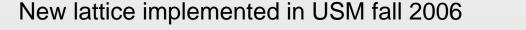
- Longitudinal feedback is operational
- 300 mA reached during MDTs in June 2007 in uniform filling mode with the longitudinal & transverse feedback
- Further test postponed due to the failure of cav5
- Ramping to 300mA will resume next run during machine time
- Machine time will later be dedicated to qualify the beamlines concerning radioprotection

With the present policy of pre-conditioning an ID chamber before installing it on a beamline, bremsstrahlung produced in the narrow aperture ID chambers and the in-vacuum undulators (level multiplied by 9/4) will remain compatible with the maximum dose rate of 0.5 microSv/h around the hutches that corresponds to unexposed personnel within the European legislation.

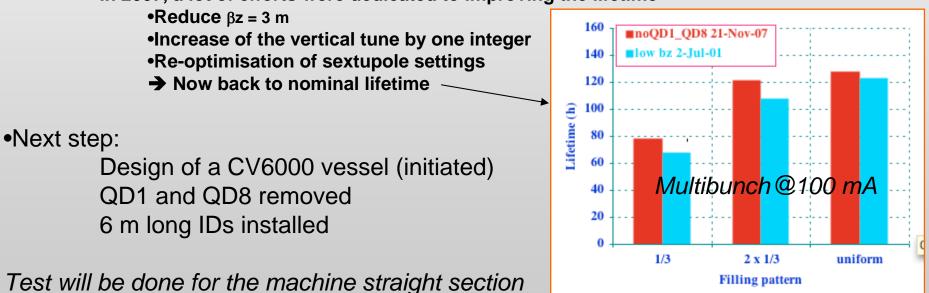

• Machine time will then be dedicated to qualify the beamlines for optics and instrumentation

No redundancy for RF power source without RF upgrade

Transverse Multibunch Feedback was experimentally used during Run 2007-05 in USM in uniform to stabilize beam ion instabilities.

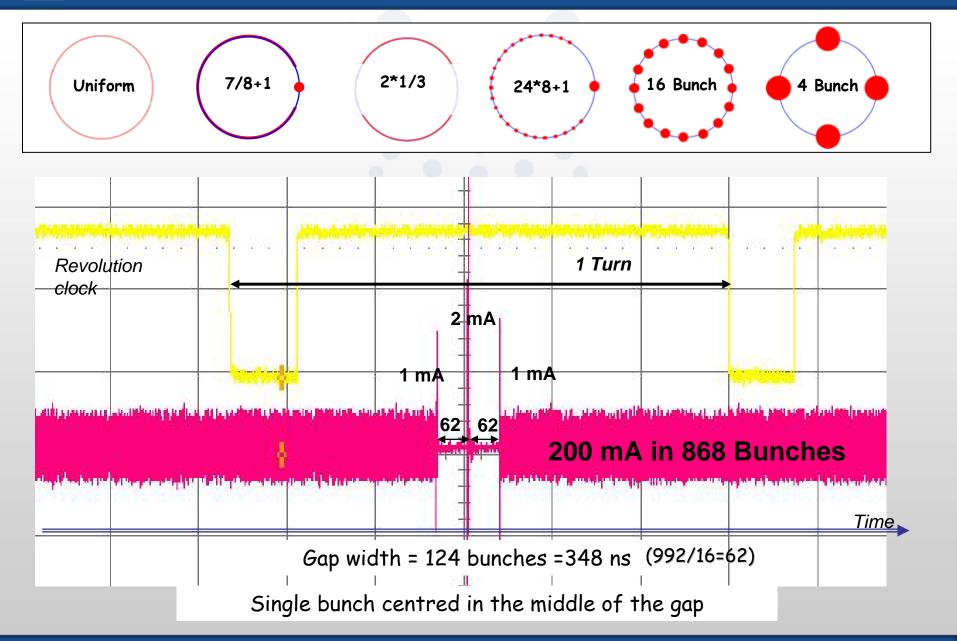

Transverse multibunch will from now on be permanently used during USM in uniform filling to guarantee a lower vertical emittance

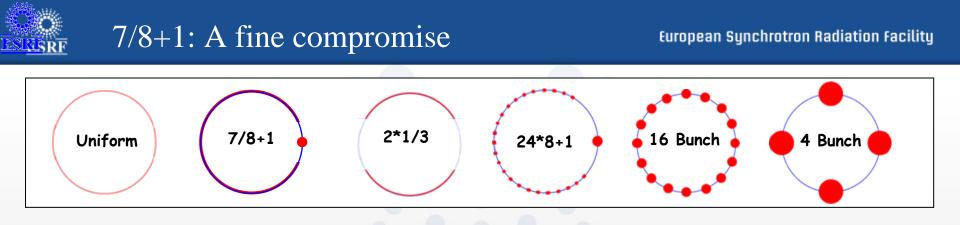
(but still a reduction in lifetime observed due to ions which do not escape, increase of local pressure →observation of even worse lifetime in uniform than 2*1/3 with MDT conditions).



• First step: the 2 quadrupoles (QD1 and QD8) on each side of the IDs are not powered for all cells

The first version of the lattice with $\beta z = 3.5 \text{ m}$ $\upsilon z = 12.39$ suffered from a moderate lifetime In 2007, a lot of efforts were dedicated to improving the lifetime




The European Light Source

Filling modes			Europea	an Synchrotron Radiation Facility				
Uniform 7/8+1 2*1/3 24*8+1 16 Bunch 4 Bunch								
	Current	Lifetime	Refill	Current per bunch				
	(mA)	(Hours)	Number					
Multibunch								
Uniform (992 bunches)	200	80	2/day	0.2 mA				
7/8+1 (868 bunches)	200	72	2/day	0.23 mA & 2 mA				
2*1/3 (704 bunches)	200	65	2/day	0.28 mA				
Time structure	Time structure							
24*8+1 Hybrid	200	30	2/day	1 mA & 4 mA				
16 Bunch	90	12	4/day	5.62 mA				
4 Bunch	40	6	6/day	10 mA				

siite,

7/8+1: A fine compromise

Chromaticity identical to multibunch:

→Lifetime intermediate between uniform and 2*1/3 for the multibunch part

- → Maximum single bunch current = 2.5 mA
 - → Refill current = 2 mA, Lifetime = 15 hours

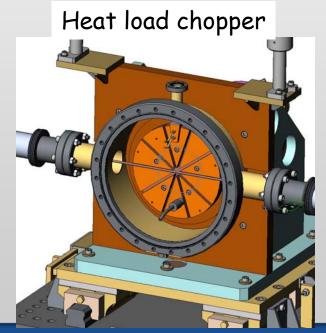
Small vertical emittance: 25 pm

No emittance growth due to ion trapping thanks to the presence of a gap

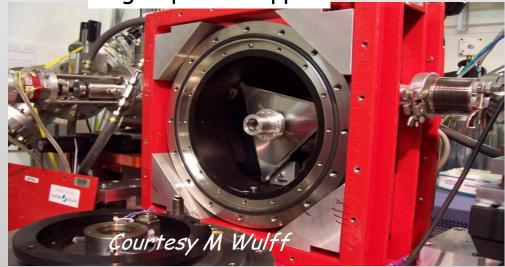
<u>Injection time slightly longer than multibunch</u> (injection speed reduced by a factor 2 and cleaning process)

<u>Cleaning</u> performance identical to other timing modes (for Moss Bauer experiments)

The European Light Source

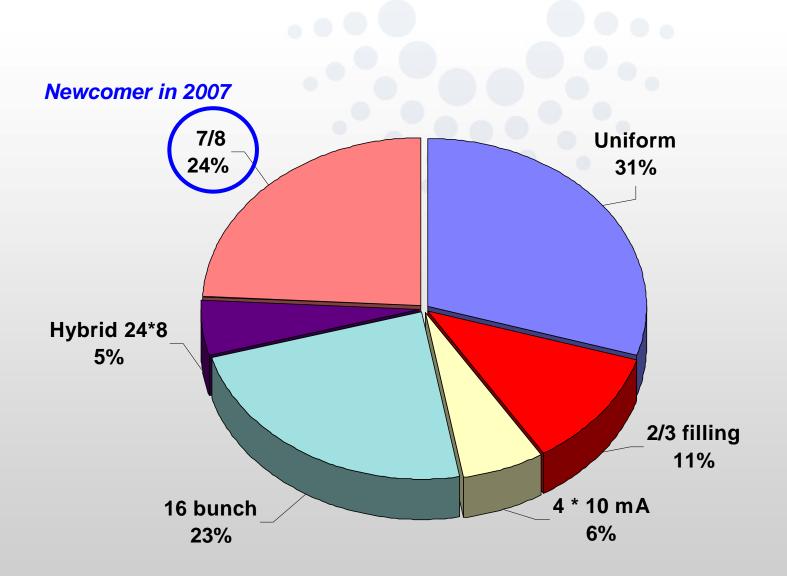

1) Pump probe experiments could be done with a filling pattern which does not penalise multibunch users.

2/ lower emittance than in other timing modes (smaller and more stable focus)


3/ shorter X-ray pulse, 60-80 ps instead of 90-110 ps (16 bunch mode)

The lower bunch charge, 2 mA compensated by running some experiments at 3 kHz instead of 1 kHz.

Higher heat load at 200 mA for a timing experiment reduced by the heat load chopper.


High-speed chopper

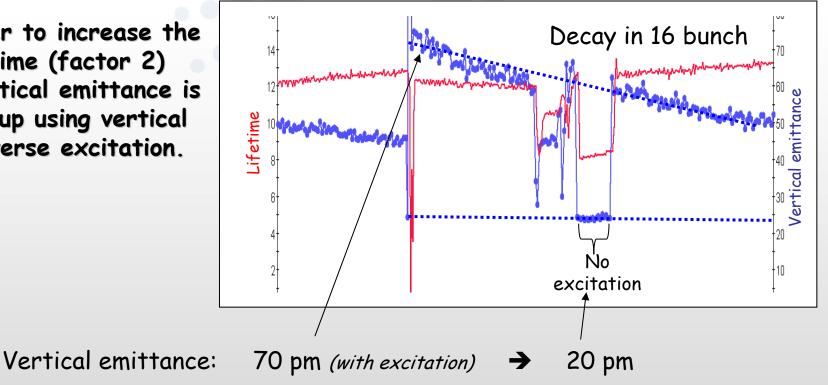
The European Light Source

Filling modes in 2007

Beam stability and filling patterns

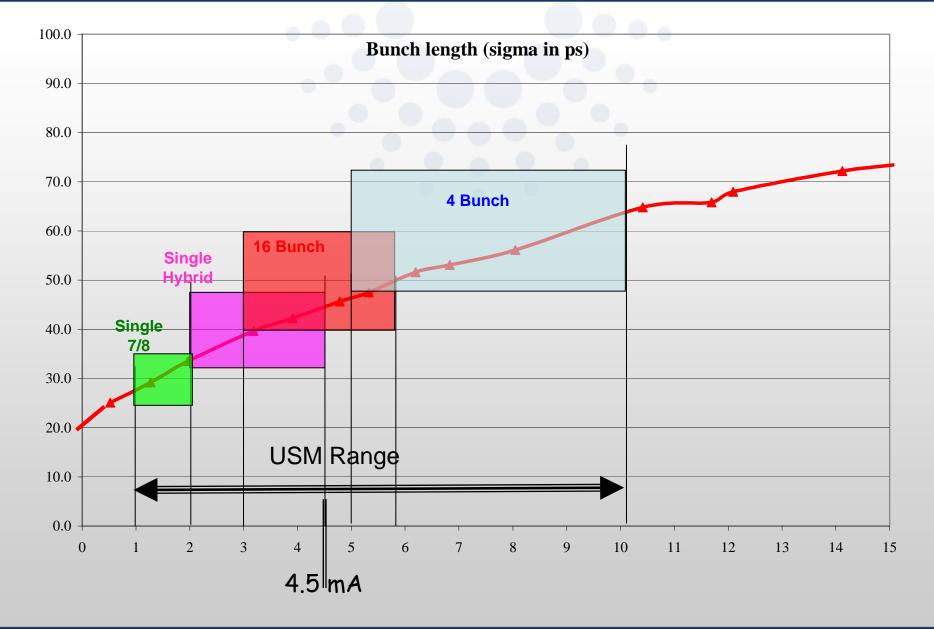
	Current	Lifetime	Refill	Current variation
	(mA)	(Hours)	Number	between refill
Multibunch				
Uniform	200	80	2/day	<u>13%</u>
2*1/3	200	65	2/day	18%
Time structure				
24*8+1 Hybrid	200	30	2/day	30%
16 Bunch	90	12	4/day	44%
4 Bunch	40	6	6/day	50%

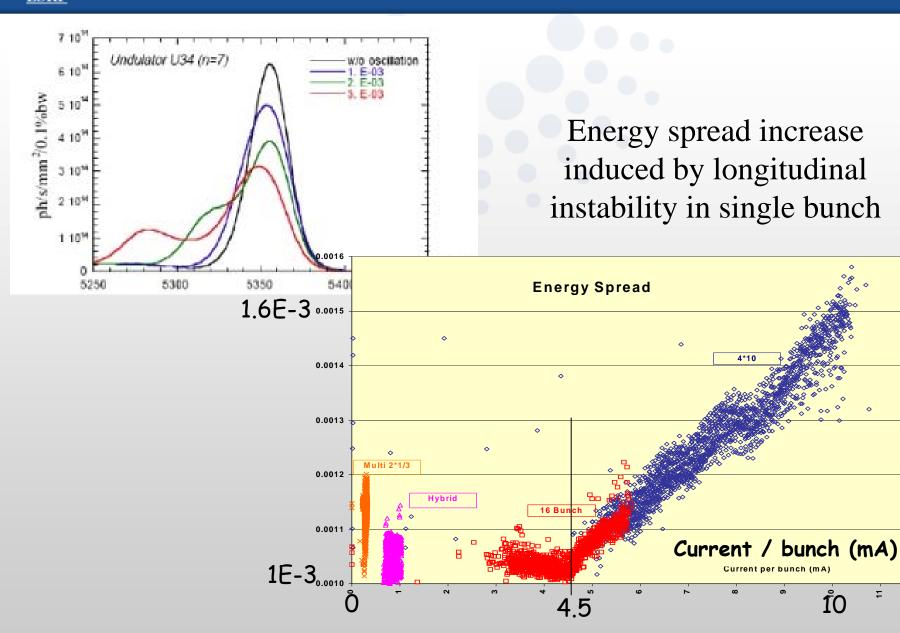
Beam current variation


→ Variation of thermal load on the beamline optics

→ Variation of beam characteristics

(Position, emittances, energy spread, bunch length and **position stability**)


In order to increase the lifetime (factor 2) the vertical emittance is blown up using vertical transverse excitation.


4 Bunch	3h30	→	6h
16 Bunch	6h30	→	12 h
Hybrid:	18h	→	30 h

Bunch Lengthening with current

Energy spread variation

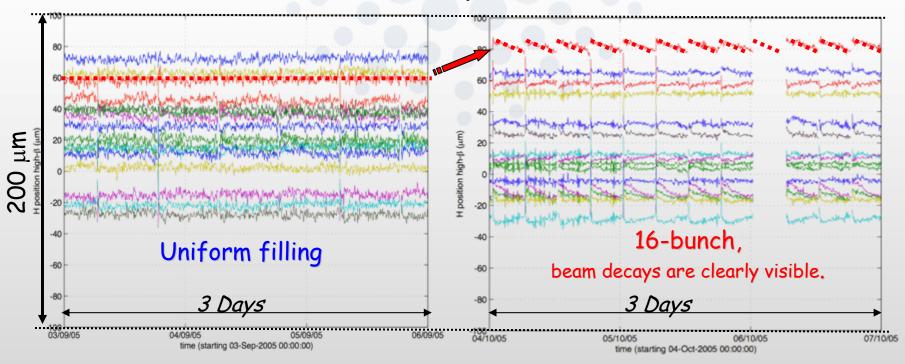
2

7

Electron beam position stability is affected by the varying heat-load resulting from the beam decay:

 \checkmark Quadrupoles are displaced by a few tenths of μm due to thermal deformations of the vacuum chamber:

→ 35µm rms beam motion (from 0 to 200 mA), corrected by slow orbit feedback.


✓ Beam Position Monitors (BPMs) are also displaced by the same effect:

 \rightarrow Identical to quadrupole motion but 0.5 μ m \rightarrow negligible.

 \checkmark BPM readings are sensitive to the beam intensity:

→ Compensated using a feed forward calibration.

Horizontal absolute position in all straight sections over 3 days: the real picture

The correction has limits: it evolves with time, it depends on the filling pattern (worse in 16 bunch), on BPM maintenance...

<u>Better stability with reduced current variation</u> <u>from an operational point of view (correction, calibration...)</u>. However the final figure will not differ from today's in multibunch.

The European Light Source

ESRF, SPring-8, APS Three-Way Meeting

Topping up

We are already operating in topping up mode.....with a repetition rate of a few times per day .

Improvement in progress for all modes :

1) The in-vacuum gap will not be open during topping up.

2) Position perturbation during topping up has to be reduced.

For multibunch:

3) The frequency of topping up could be increased if needed.

For time structure modes:

- 5) Topping up frequency <u>must be increased</u> to compensate for the short lifetime and to stabilize the beam parameters (Better stability and no beam blow up necessary for a decent lifetime) → Refill every 5 minutes is envisaged
- 6) Cleaning in the injector is still under development.
- 7) Machine physics studies on the injector are in progress.
- 8) An upgrade of the booster power supply is part of the upgrade programme

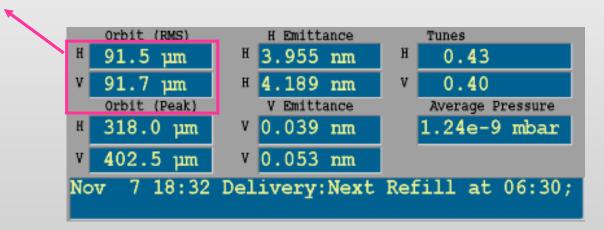
(No current increase foreseen in time structure, limited by heat load induced in the RF fingers).

Stability Criteria:

Emittance growth < 20%

→ 10% on beam size and 10% on beam divergence

	Horizontal	Vertical
Emittances	4 nm	30 pm
β function	35 m	3 m
Beam size	380 μm	9 μ m
Required stability	38 μ m	0.9 μ m

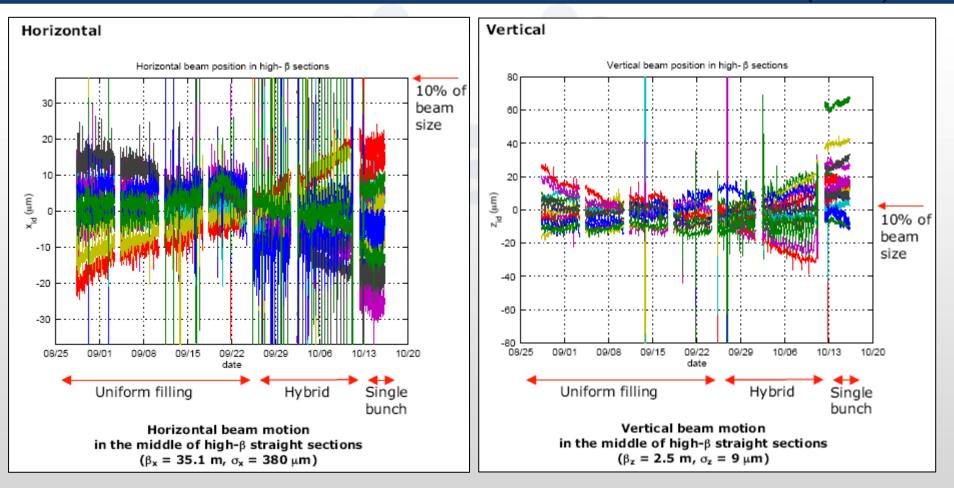


Slow motion

The electron beam position is continuously measured at 224 positions around the ring with a <u>resolution of 1 µm with averaging</u>.

This deviation from the reference orbit is minimized by a global correction by SVD method, which is computed every 30 sec.

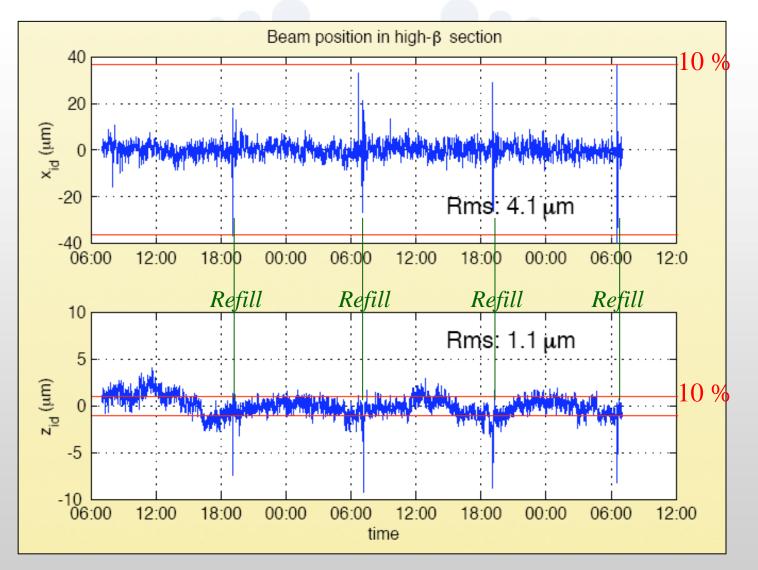
The correction is applied at 96 positions in each plane using steerer magnets.



The offset of the BPM and the calibration of drifts with beam intensity are periodically updated

Long term electron beam stability

European Synchrotron Radiation Facility (7 weeks)

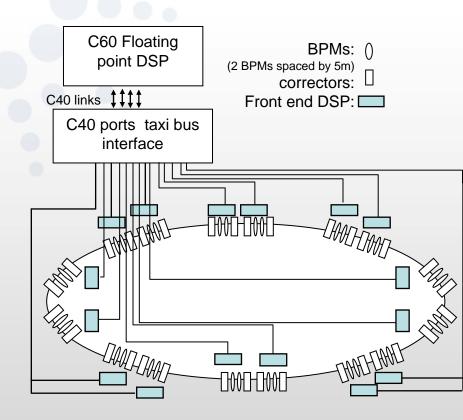

→Within 10% of horizontal beam size for more than 6 weeks

→ Visible influence of the filling pattern

- →Exceed 10% of beam size over long term
- \rightarrow Influence of the filling pattern

→Problem of referential: the ground itself is not an absolute reference in that range.

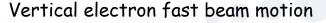
The stability is corrected by the permanent closed orbit correction.

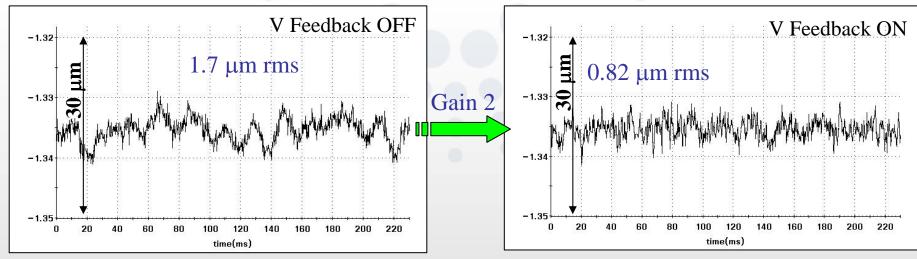


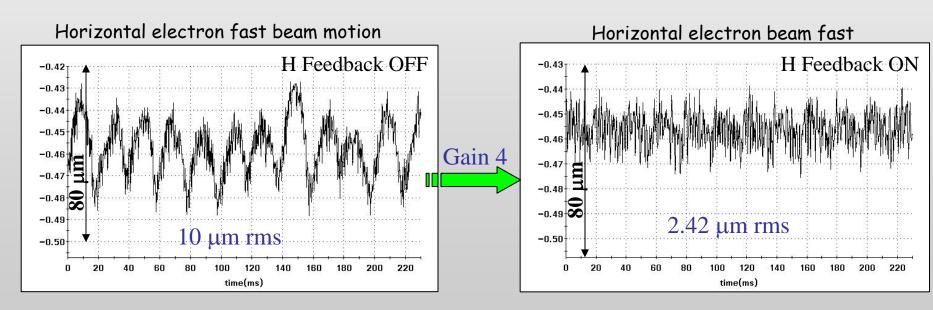
Fast beam motion

Fast horizontal and vertical global feedback reduce the noise in a bandwidth from 0.1 to 150 Hz:

H: 32BPMs and 32 correctors

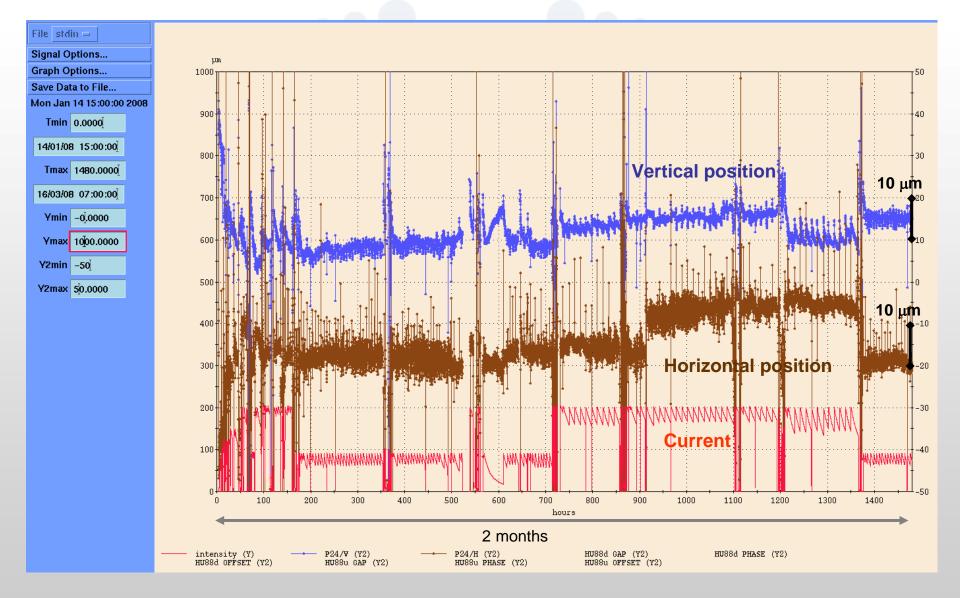

- V: 16BPMs and 16 correctors,
 - 4.4 kHz correction rate
 - Gain = 4 in horizontal
 - Gain = 2 in vertical




Damping material are located on each side of the girders to reduce vibration effects Gain of 3 in the horizontal plane.

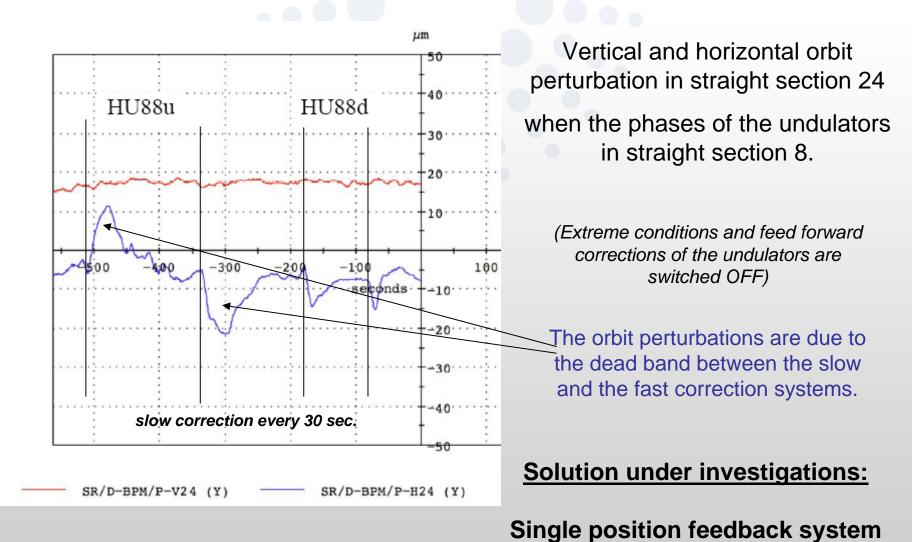
Vertical electron fast beam motion

Typical RMS beam motion in high beta straight sections


	Horizontal	Vertical			
10% of Beam size	38 μ m	0.9 μm			
One week	11 μ m	8 μm			
One day	5 μm	2 μm			
One hour	5 μm	2 μm			
One minute	5 μm	2 μm			
One second	2 μm	1 μm			

A combination of slow control, mechanical damping links and fast global feedback brings the vibration and the slow motion to an acceptable level.

The amplitude of very slow motion is still dominant.



Typical beam position in cell 24

Gap motion and feedback

from DC to 150 Hz

BPM electronics, the existing system :

Still works properly & reliably, after > 15 years of loyal service . .

→ but first turn mode needs 4*5 mA from the injector, which may caused too high level of radiation and will block the instigations (safety regulation has drastically evolve since 1992).

➔ Need of a low current , pure single shot BPMs electronics

→ Solution:

Libera system which now equiped :

Diamond, Soleil, Elettra, Alba, Petra-3, Delta and some other major Accelerators outside Europe

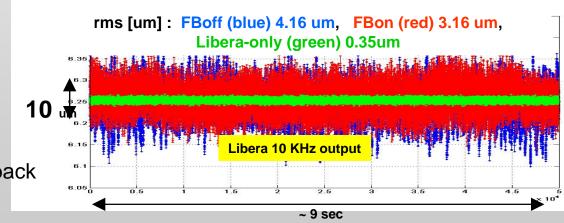
with a Turn-Key BPM system for both Slow & Fast orbit measurement

The "Libera" :

•Fully integrated turn-key solution for signal acquisition & treatment of BPM signals.

•Measures weak signals with high quality RF electronics & Digital Signal Processing techniques to calculate the electron beam position with high precision, resolution and stability.

•Maintain an un-precedented stability of this position measurement over a large dynamic range (= 0.1 to 300mA beam current in the ESRF Storage Ring)

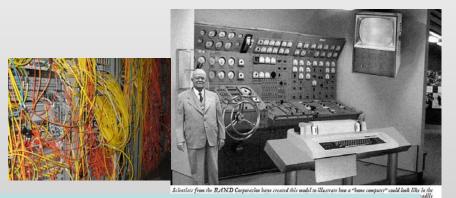

•In addition to measure the slow beam position (10Hz) it also provides :

- First-Turn and Turn-by-Turn outputs (355KHz)
- high-resolution 10KHz output for use in Fast-Orbit-Feedback schemes

<u>Status:</u> 8 electronics installed for qualification and later to be used for beam position interlocks.

The 224 existing electronics will be upgraded to Liberas within the upgrade programme

→ 224 signals for the fast orbit feedback instead of the existing 32 inputs



 The ESRF accelerator control system has evolved to an object oriented distributed control system TANGO from 2000 (Old system TACO and new system still cohabit)

http://www.tango-controls.org/

- Evolution of computing market
 Obligation to be more heterogenic to fulfil the technical requirements
- The compromise between standardisation and modernity is today extremely difficult.
 - Evolution is mandatory in order not to be rapidly obsolete

 Embedded control system is today the direction of evolution

Despite its complexity the machine control system is extremely reliable thank to the close collaboration between the ASD and CS Four hours of machine time with beam are purely dedicated each run to <u>control activities</u>

Who use and collaborate to tango?

European Synchrotron Radiation Facility

The European Light Source

ESRF, SPring-8, APS Three-Way Meeting

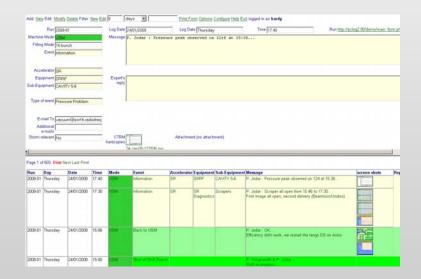
Electronic Logbook

🚰 CTRM electronic logbook (CTRMLogbook) - Microsoft Internet Explorer	×
File Edit View Favorites Tools Help	
🛛 😮 Back 🔹 🕥 - 💌 😰 🏠 🔎 Search 🤆 Favorites 🚱 🔗 - 🍃 🔤 - 📃	
Address 🖉 http://pclog/CTRM_e_Logbook/index.htm?	
Add: <u>New</u> Edit: <u>Modify</u> <u>Delete</u> Filter: <u>New Edit</u> 0 days 💌 <u>Print Form</u> <u>Options Help Exit</u> logged in as revolji	
Run 2006 Fully in operation for 2 yearss (almost) No more paper	
Filling Mode 2* Proved to be reliable and useful to dispatch information	
duration (min) and to retrieve events.	
Accelerator SR Equipment SRRF Expert's reply	
Sub- TRA3 Equipment	
Type of event Arc Detection	
	2
2006- Tuesday 05	
2006- Tuesday After 2 years of experience → More (and more precise)	
information is available compared to the paper logbook	
2006- ⁰⁵ ¹	
Thee guest access on site	
1) From ANY ESRF PC, on any Web browser: just type "pclog"	
2006- Tu 2) Username: guest	
Page 1 of	اح
E Local intranet	

sille

Present situation:

- 13 different logbooks are being routinely used (including the MX macromolecular Group)
- On 23/01/2008: 10 000 records entered in the CTRM electronic Logbook


2560 documents entered in the AS Division

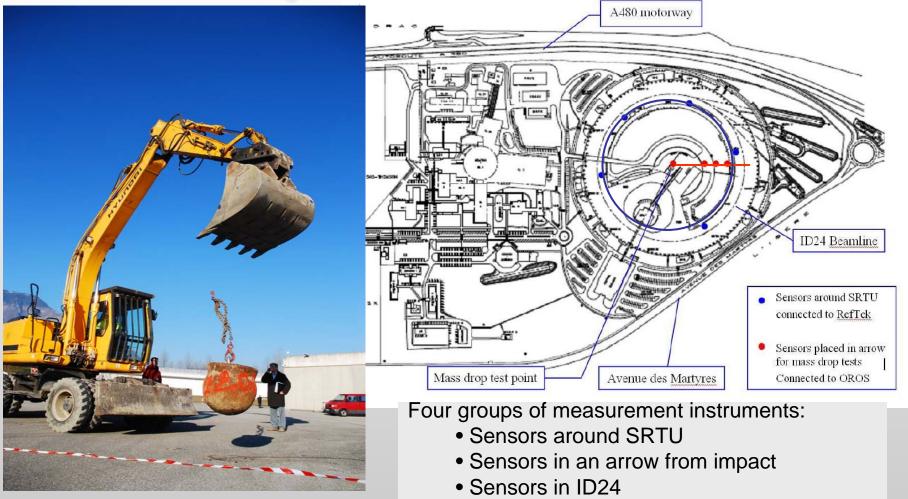
Extensively used by many groups (within and outside the ASD)

 \cdot VERY strong request from several beamlines to have the same logbook

In about 2-3 months:

- A new version will be installed with a link to the ESRF Tango control System
 - Possibility to import automatic data on Operator's request and possibility to generate automatically records « on events » triggered by predefined criteria

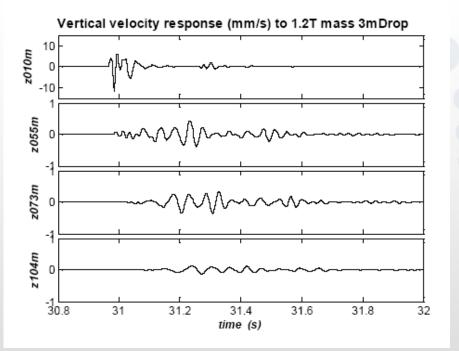
MANY thanks for your attention


10

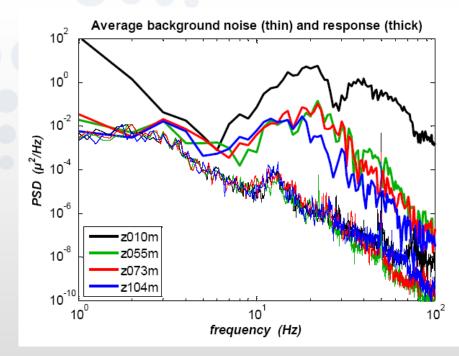
J.

The European Light Source

ESRF, SPring-8, APS Three-Way Meeting


Common experiment on vibrations with technical service, beamlines and ASD in Feb08 to prepare the call for tender for the building extension.

• Electrons and X BPMs in ID24


Mass drop induced vibration study

Vibration attenuation with distance and time

Vertical vibration velocity response to the 1200 kg steel mass drop from 3 m height.

Measurement points are at 10, 55, 73 and 104 meters from the impact point.

Vibration attenuation with distance : spectral analysis

Vertical displacement PSD of the mass drop responses (thick lines) compared with the PSD of the background vibration noise (thin lines).

Data under processing

The European Light Source

THE PTS SYSTEM FOR STAFFING SHIFTS

In **2007**:

720 USM and USM-like shifts were covered by 81 PTS.

Since the start of the PTS system, on average 80 staff members participate every year in the continuous functioning of the installation as second member of the shift crew. The "typical" PTS is either a technician or engineer working in the Accelerator and Source Division, Technical or Computing Services.

Three members of the Administrative staff have joined the PTS pool and now participate on a regular basis.

CTRM activity (shift, standby, intervention) is represented on the group planning in the same way as other activities (absences, RTT, training, missions).

PLANNING My group planning										
From 21/01 To 03/02/2008 💌 FORTNIGHT 💌										
Name	Mon. 21/01	Tue. 22/01	Wed. 23/01	Thu. 24/01	Fri. 25/01	Sat. 26/01	Sun. 27/01	Mon. 28/01	Tue. 29/01	
CHAZOT GILLES								,		
CHIAPPINELLI STEPHANE	WRK	WRK			•		WRK	WRK	WRK	
GARNODON GILLES	WRK	•		WRK	WRK	WRK	WRK	•	WRK	
HARDY LAURENT	SBY	SBY	SBY	SBY	SBY	SBY	SBY			
HENRISSAT PHILIPPE	ABS	· · · _	•				-	ABS	ABS	
JODAR PIERRE	WRK	WR	WRK	WRK	WRK	WRK				
KHADROUCHE KI Morr	ning Shift M	achine				•				
LEDRAPPIER BERNARD		•	•					•		
NICLAS CHARLES	WRK	WRK	WRK	WRK						
PAULIN MAXIME		•	•		WRK	WRK	WRK	WRK		
ROUSSELY PHILIPPE		•	•			•	•			

MANY thanks for your attention

10

J.

The European Light Source

ESRF, SPring-8, APS Three-Way Meeting