Status of SPring-8 Feedback and related topics another topic on ERL

T. Nakamura SPring-8

SPring-8 Bunch-by-bunch Feedback

FPGA Based Digital Bunch-by-bunch Transverse Feedback (EPAC '04)

2003 Sep. first operation, 508.58MS/s
2004, Jan. for user operation prototype 7 FPGA (<= 24 DSP) with 7 boards => simple and low-cost World First FPGA based bunch-by-bunch feedback above 350MS/s?
* New FPGA based Digital Feedback Processor (ICALEPCS '05) 1 FPGA with 1 board, 2x 20-tap FIR, 50-tap FIR

* Single-Loop Two-Dimensional (H,V) Feedback (EPAC '06)

One Signal from BPM to Kicker, One Processor

Photon Factory (2005, Sep.)

Taiwan Light Source (2005, Nov.)

SOLEIL (2006, Dec.)

* RF direct sampling (KASOKUKI '07 [] (Japan [] []), EPAC '08)

ADC samples BPM signal without Down Conversion Circuit Less tuning points, less cost

2007, Feb. ~ for user operation

* Automatic Attenuator (Bunch Current Sensitive)

Hybrid Filling with High Contrast Bunch Current (EPAC '08) In Progress : SSRF(China), Hefei Light Source (China), NIRS(Japan, Ion ring) Tested : S-LSR(Japan, proton)

SPring-8 Feedback Processor

Single-Loop Two-Dimensional Transverse Feedback

RF Direct Sampling

Damping Time Measurement (Vertical)

Frequency Response of Feedback Signal Processor

Residual Signal and Effect of Sampling Jitter

Residual Motion by Noise

Measured Position with Noise δ $x = x_{\beta} + \delta$ Feedback Kicker Derived formula for residual motion $\sigma_{x} = \frac{\sqrt{T_{0}\tau}}{\sigma_{\delta}} = 0.1\sigma_{\delta} \ll$ 5 µm $\sim 1 \,\mu m$ Diffraction Limit Sizeof au_{FR} Hard x-ray $\tau \sim \tau_{FB} = 0.5 ms$ \Box $\sigma_{\delta} \sim 5 \,\mu m$ $T_0 = 4.8 \ \mu s$

Single-Bunch Single-Bunch current at $\xi \sim 0$ limited by mode-coupling instability (horizontal, vertical) 4 mA / bunch at $\xi \sim 0$ without feedback beam lost at injection $=> 1 \sim 2mA$ 4 mA / bunch at $\xi \sim 0$ with feedback beam lost at injection $=> 1 \sim 2mA$ 12 mA / bunch at $\xi \sim 0$ with feedback with Higher Horizontal Feedback Strength (amplifier power, # of kickers 2 -> 4)

short Damping Time against Instability wide Dynamic Range against saturation at

aturation at injection perturbation or noise

Horizontal Kicker (in 2008)

Horizontal Motion excited by Bump

T. Nakamura, Phys. Rev. ST Accel. Beams 11, 032803 (2008)

Two-turn System with RF deflection Cavity

Example: SPring-8 30m straight section

Two-turn system

Kick Voltage by f_D Cavity = 8 GeV x 1mrad / 2 = 4MV KEKB Crab Cavity 2MV APS short pulse X-ray ~ 4MV)