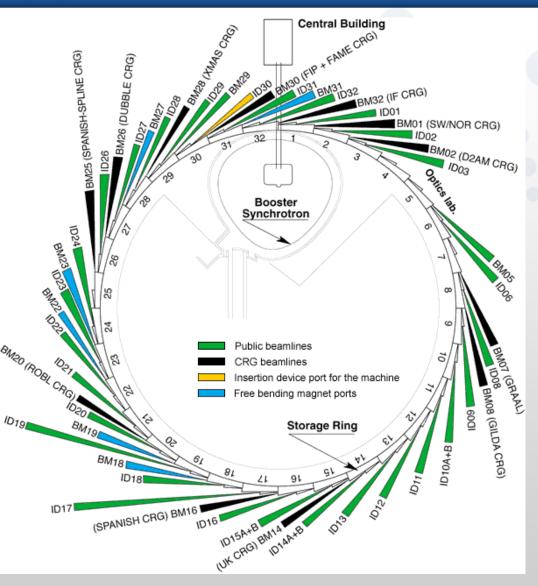


A Light for Science

Three way meeting APS 18 March 2008

The ESRF Beamlines and the Upgrade Programme


Outline

Beamline developments to day

Beamlines in the Upgrade Programme

Preparing for the future

31 Public beamlines

29 ID and 2 BM

12 CRG beamlines

Beamline Groups

High Resolution and Resonance Scattering ID16, ID26, ID18, ID28

Macromolecular Crystallography ID14A, ID14B, ID29, ID23

Materials Science

ID09, ID11, ID15, ID27, ID31

Soft Condensed Matter

ID02, ID10A, ID10B, ID13

Surface and Interface Science

ID01, ID03, ID32

X-ray Absorption and Magnetic Scattering

ID08, ID12, ID24, BM29

X-ray Imaging and Optics BM5, ID17, ID19, ID21, ID22

TBS: ID06

Five years Medium Term Scientific Plan - Beamlines

- ~8 beamlines (ESRF and CRG) are reviewed by international expert panels every year
- Recommendations from the panel are considered seriously by the management
- Ongoing major refurbishments for ~ 3 beamlines
- Instrumentation : Optics, Detectors, Sample Environment

ESRF Long Term Strategy - Upgrade Programme

Important Council Decisions:

June 2006: Integrate the Medium Term Scientific Plans with the Long Term Strategy into a 10 years planning

2.

November 2007: Acceptance of the Scientific and Technology Programme described in the Purple Books

Science and Technology Programme 2008-2017

Volume 2: Annexes

Annex 1

Conceptual Design reports

Ed Mitchell and the Upgrade Team

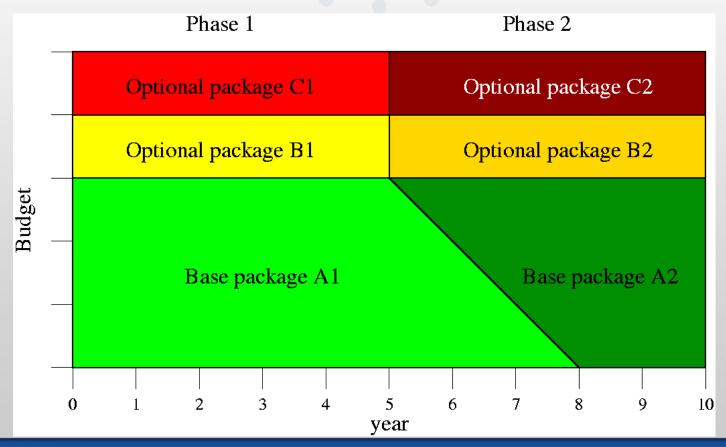
High Resolution and Resonance S	Scattering	5 CRD
Macromolecular Crystallography ID14A, ID14B, ID29, ID23		4 CDR
Materials Science ID09, ID11, ID15, ID27, ID31		6 CDR
Soft Condensed Matter ID02, ID10A, ID10B, ID13		5 CRD
Surface and Interface Science ID01, ID03, ID32		3 CDR
X-ray Absorption and Magnetic S ID08, ID12, ID24, BM29	Scattering	7 CDR
X-ray Imaging and Optics BM5, ID17, ID19, ID21, ID22	ΓBS: ID06	4 CDR 3 CRD

Five Scientific Highlight Areas

Nano-Science and Nano-Technology

Structural/functional Biology and Soft Matter

Pump-Probe Experiments
Time Resolved Diffraction


Science at Extreme Conditions

X-ray Imaging

The Upgrade a phased scenario

- Base package A1 includes 8 beamlines
 Optional package B1 consists of 2 additional beamlines
- Identification 8+2 beamlines requiring the Upgrade

Candidate beamline projects Phase I

Restricted SAC Meeting and ESRF Management on 29-07-2007 8+2 Phase I beamlines distributed among the areas:

2+1: Nano-Science and Nano-Technology

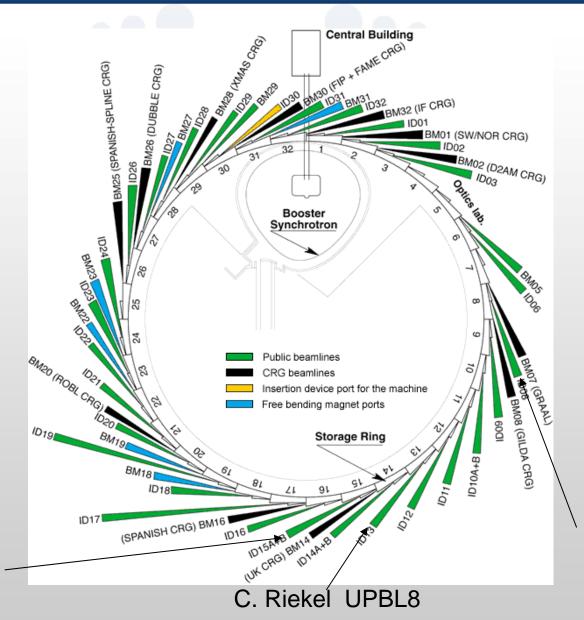
2: Life Sciences and Soft Matter

2: X-ray Imaging

1+1: Extreme Conditions

1: Pump and Probe and Time-resolved Science

Information meeting on the Upgrade Programme 24. October



Candidate beamlines Phase I – Presented to the SAC Nov 2007

- UPBL1: Local probe coherent diffraction imaging and nanobeam diffraction for characterisation of individual nanostructures
- UPBL2: High energy beamline for buried interface structure and materials processing
- UPBL3: Nuclear resonance beamline for the study of nanoscale materials: the interplay of growth, structure, electric and magnetic properties as well as dynamics
- UPBL4: Beamline for imaging, fluorescence and spectroscopy at the nanoscale
- UPBL5: Beamline for parallel and coherent beam imaging
- UPBL6: High energy resolution inelastic scattering in the hard X-ray range with micro- and nano-focus capabilities

- UPBL7: Soft X-rays for nano-magnetic and electronic spectroscopies
- UPBL8: Nano- and microbeam crystallography for structural and functional biology and soft matter
- UPBL9(a): Sub-microradian angular resolution small-angle scattering for probing the structure and nonequilibrium dynamics of self-assembled soft matter and biological systems
 - **UPBL9(b):** Structural dynamics of molecular assemblies
- UPBL10: Large-scale automated screening, selection and data collection for macromolecular crystallography
- UPBL11: Pushing the limits of energy dispersive X-ray absorption spectroscopy towards the nano in spatial and temporal resolution.

N. Brookes UPBL7

V. Honkimaki UPBL2

UPBL1: COHERENT DIFFRACTION IMAGING

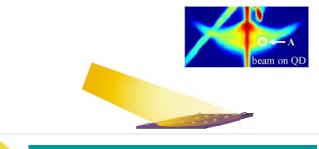
AIM OF "CDI":

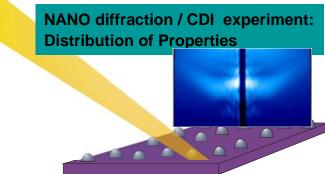
 reveal the relation between structure and functionality of Nano-materials properties induced by quantum confinement

REQUIRED FOR:

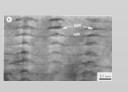
- novel (opto-)electronic devices (laser, detectors, sensors, LEDs.....)
- quantum dot based quantum cryptography
- future quantum computing

EXPERIMENTAL:


- quantum systems exhibit exploitable quantum confinement effects
- they depend on shape, strain and composition of single nanostructures
- Immediate need for novel characterisation techniques at the nanometre scale

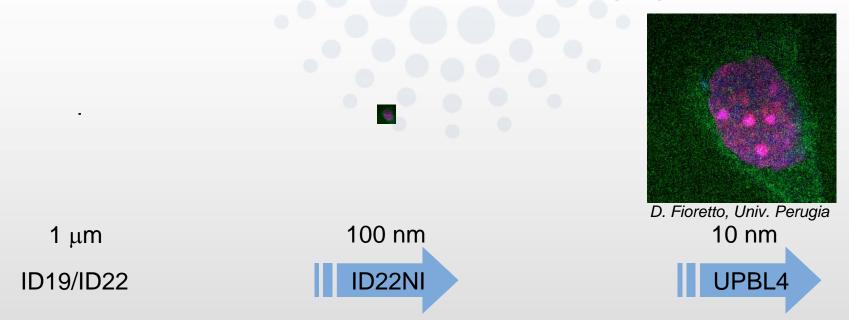

SOLUTION:

- Nano diffraction on individual nanostructures
 Distributions of properties rather than averages
- Coherent Diffraction Imaging

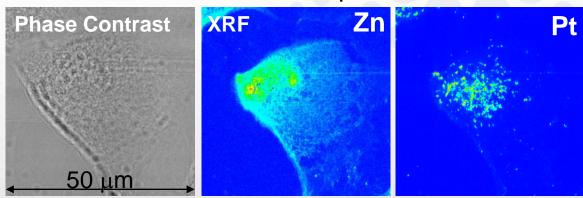

 nano-crystals and non-periodic objects
 no model assumptions needed due to phase retrieval

"Conventional" experiment : Average Properties

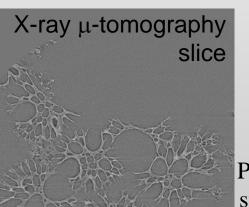
RESULTS: Shape, strain, composition of single nano-objects



UPBL4: Nano-scale X-ray Imaging


Scanning Fluorescence and Imaging at the Nanoscale using X-rays

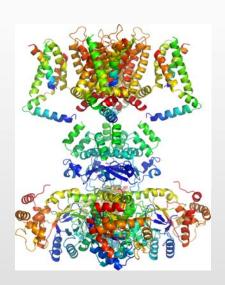
- An intense state-of-the-art nano-probe providing unique very high resolution capabilities for 3D imaging and fluorescence micro-analysis
- To be implemented on a new long beamline at a high-beta straight section with a dedicated microscope


SEM

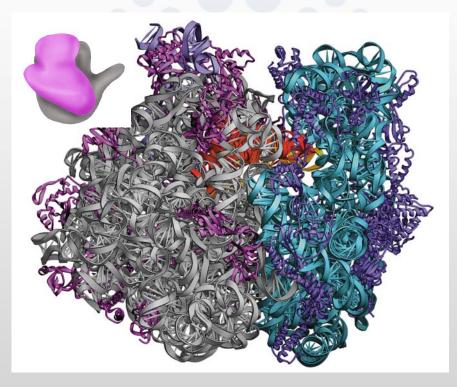
UPBL4: Nano-particle / cell / tissue interaction

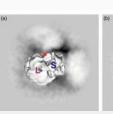
ID22NI S Bohic, P Cloetens; B. Kysela, Univ. Birmingham

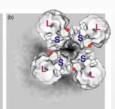
Pt nanoparticles φ: 6 nm target the nucleus


J Nygaard, M Foss, iNano, Aarhus University; P Cloetens

Towards imaging of individual nano-particles and their interaction with cells and tissues

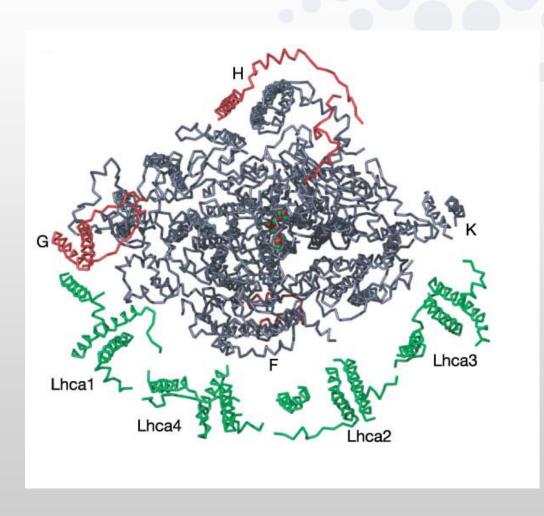

Polymer scaffold for stem cell cultivation


Progress In Structural Biology.



The resolution of the structure and the biophysical properties of the Voltage dependant K+channel led to the Nobel Prize for Chemistry for ESRF user Rod McKinnon (in 2003. Mechanism remains elusive

Ribosome Structural and Functional knowledge has improved from very low resolution/detail to atomic level due almost entirely to SR. And screening thousands of samples!



The spliceosome:
the most complex
macromolecular
machine in the cell?
Preparing Genes for
translation by
Ribosomes. Detailed
Structural knowledge
of the fundamental
actions will be entirely
dependent on SR.

Photosystem I from Plant (Pisum sativum)

Monomeric

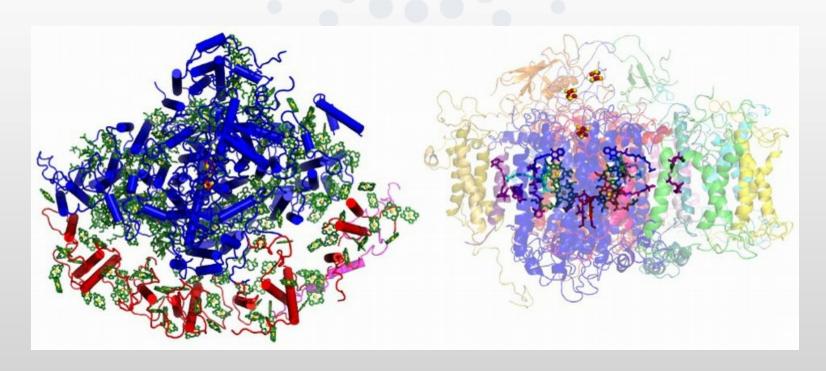
12 core subunits

4 light harvesting membrane proteins

45 transmembrane helices

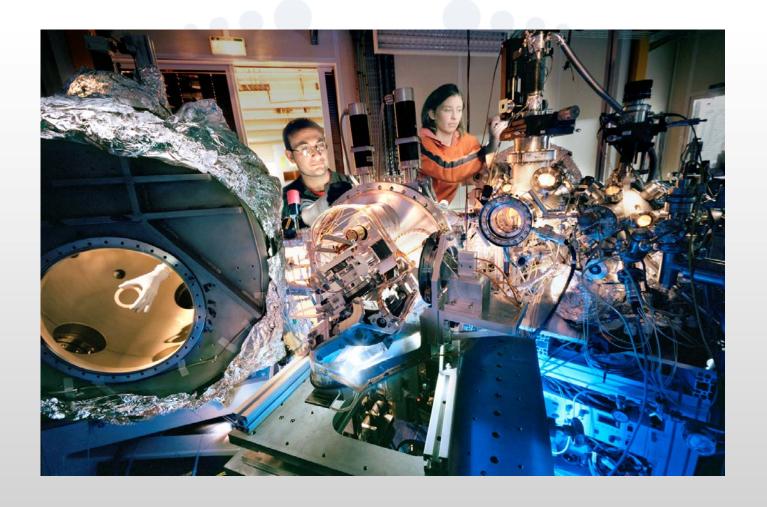
167 chlorophylls

3 Fe-S clusters


2 phylloquinones

Resolution 4.4 Å

Ben-Sham, Frolow, Nelson, Nature 426 (2003) 630


ID23-2: Better resolution data from larger, radiation sensitive crystals

A. Amunts, O. Drory & N. Nelson, The structure of a plant Photosystem I supercomplex at 3.4 Å resolution. (2007) *Nature*, 447, 58-63.

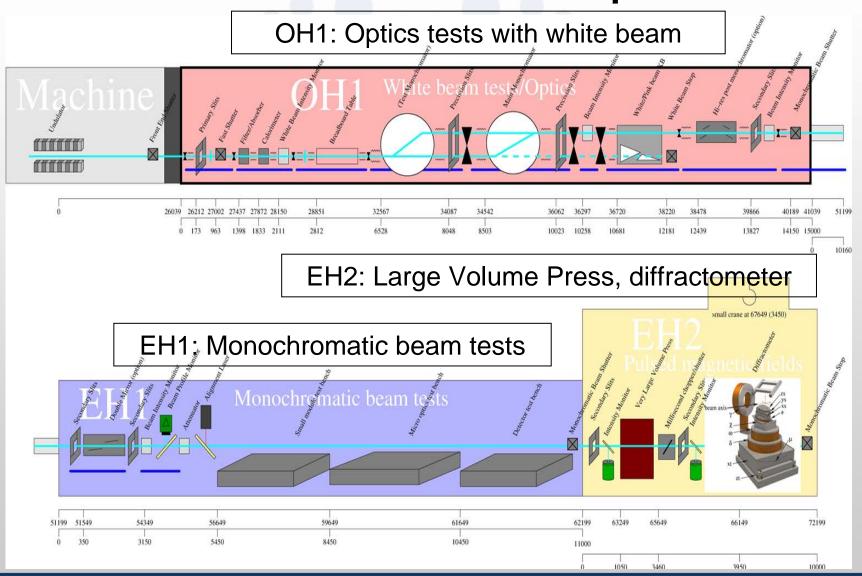
Microbeams and screening facilities

What is next?

Medium Term Scientific Plan 2008 – 2012 Beamline Activities

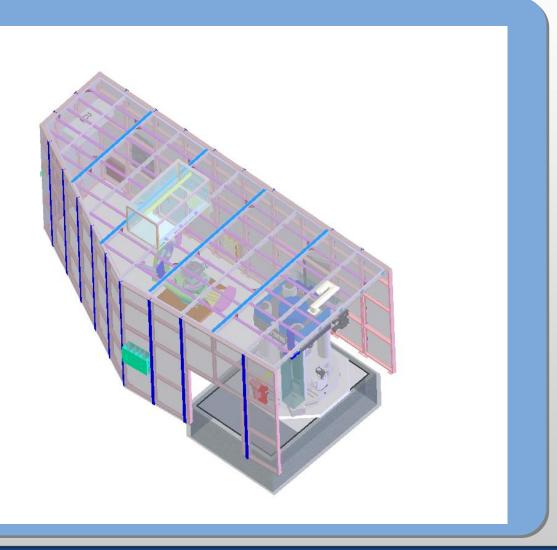
- Brainstorm meetings and workshops throughout 2008 to develop the UPBL Technical Design Reports (TDR)
- Accelerator and Source developments e.g.Insertion Devices and Beamline Front-Ends
- Instrumentation developments (Optics, Detectors, Sample Environment)
- Development of Partnerships (Soft Condensed Matter)
- Nanofocusing pilot projects (ID11, ID13, ID22NI)
- ID06 Beamline for tests of optics, detectors, etc

P. Fajardo



ID06: Instrumentation development

- Multi-purpose instrument development beamline
- Optics, detectors, monochromators, white beam profile monitors ... for high energy/high brilliance applications (partnership with DESY)
- Development of high pressure science (geophysics, planetary physics)
- Development of very high magnetic field capabilities (> 30Tesla)



ID06: Instrumentation development

ID06 Large Volume Press

EH2 with LVP and HMF

15 keV -> >80 keV

2 x Cryo Si (111)

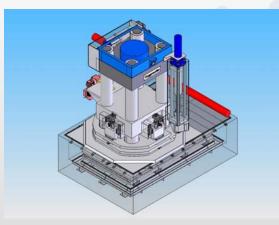
In vac. undulators

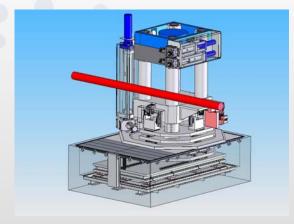
(spring shutdown)

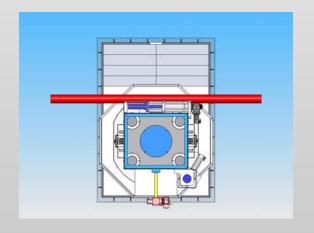
IP or large flat panel

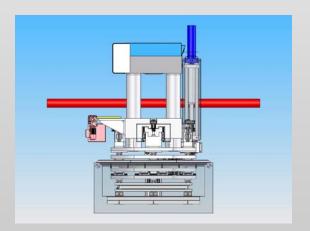
pixelated detectors

Radial collimation


Spiral collimation

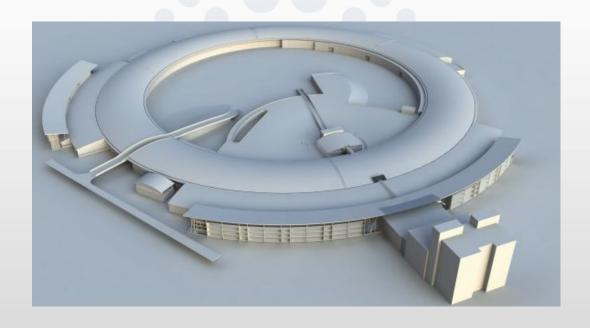



ID06: Instrumentation development


3D design models of the Large Volume Press

 $2 \times 2 \times 4 \text{ m}^3$, ~35 ton

Removal of material from hutch for the concrete support at a depth of 1.4 m


Concrete put in in two stages
Steel support frame

We are preparing for the Upgrade

Thanks for your attention