

... for a brighter future

X-Ray FEL Oscillator

Kwang-Je Kim, Yuri Shvyd'ko, and Sven Reiche

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC 3WM08: Accelartor R&D

March 19, 2008

X-Ray FEL Oscillator (X-FELO)

- A fully coherent source of x-rays in the spectral range 5-20 keV:
 - 10⁹ photons/pulse, rep rates at least 1 MHz , limited by thermal loading
 - Peak SB ~ SASE from high-gain FEL
 - Average SB~ at least 10 times European XFEL
 - Not tunable

Key components:

- A continuous sequence of ultra-low emittance, multi-GeV electron bunches → ERL
- Low-loss x-ray optical cavity using high reflectivity crystals

ERL bunches have low intensity and are not suitable for *high-gain* XFEL but OK for X-FEL oscillator

X-Ray Cavity with Crystals

- X-ray FEL Oscillator (XFEL-O) using Bragg reflector was first proposed by R. Colella and A. Luccio at a BNL workshop in 1984 (The same meeting where high-gain SASE was proposed by Bonifacio, Pellegrini, and Narducci).
- However, accelerators producing electron beams with required qualities were not known at that time
- More recently, use of X-ray cavities have been studied for improving the performance of high-gain FEL:
 - Electron out-coupling scheme by B. Adams and G. Materlik (1996)
 - Regenerative amplifier using LCLS beam (Z. Huang and R. Ruth, PRL, 2006)

Principles of an FEL Oscillator

Small signal gain g = \Delta P_{intra} / P_{intra}

- Start-up: $(1+g_0) R_1 R_2 > 1$ ($R_1 \& R_2$: mirror reflectivity)
- Saturation: $(1+g_{sat}) R_1 R_2 = 1$

Synchronism

- Spacing between electron bunches=2L/n (L: length of the cavity)

3WM08: March 19, 2008

X-ray Optical Cavity

Choose low Z, high Debye temperature crystals

- C (diamond), BeO, SiC, α -AL₂O₃ (sapphire)
- Operate T=30K for high-reflectivity, high thermal conductivity, low sensitivity of interplanar spacing on T
- Avoid exact backscattering in case of C to prevent loss from multiple diffraction

Crystal quality issue

 Choose a small (d <0.2 mm) high quality single crystal from a bulk sample

Focusing elements to adjust mode profile

- Bending of crystal may destroy reflectivity
- Parabolic Compound Refracitive Lenses (CRLs)
- Grazing incidence mirror when Bragg mirrors are not in exact backscattering

Sapphire Reflectivity @ 14.3 keV

3WM08: March 19, 2008

Options for XFEL-O Cavities (Y. Shvyd'ko)

 $AI_2O_3xAI_2O_3$ @14.3 keV R_T=0.87, G_{sat}=15%, T=3%

CxCxmirror @12.4 keV RT=0.91, G_{sat}=10%, T=4%

Al₂O₃xAl₂O₃xSiO₂@ 14.4125 keV RT=0.82, G_{sat}=22 %, T=4%

FEL Performance Study

- Analytic formula for initial gain including diffraction and electron beam profile
- Steady state GENISIS simulation for gain as a function of intra-cavity power to determine saturation power
- Simulation of build up from spontaneous emission using modified GENESIS
- "Supermode" analysis to determine temporal structure, in particular length of x-ray pulse

Beam Quality Parameters (ERL High-Coherence Mode)

	Q(pC)	ε _{nx} (10 ⁻⁷ m)	σ _{ΔΕ} (MeV)	τ _{el} (ps)
A: Conservative	19	1.64	1.4	2
B: Cornell Design*	19	.82	1.4	2
C: Optimistic**	40	.82	1.4	2

* D.H. Bilderback, C. K. Sinclaire, and S.M. Gruner, Synch. Rad. News, 19-6, 30 (2007)

** I.V. Bazarov and C. Sinclaire, , PRSTAB, 8, 034202(2005)

Examples of Steady-State Calculation

Electrons are not focused but matched to the optical mode determined by cavity configuration $(Z_R = \beta^* = 10 \sim 12 \text{ m})$

λ(Å)	E (GeV)	Bunch Quality	K	λ _υ (cm)	N _U	G ₀ (%)	R _T (%)	P _{sat} (MW)
2.48	7	Α	2.5	2.26	2600	35	83	10
1	7	В	1.414	1.88	3000	28	90	19
1	7	С	1.414	1.88	3000	66	83	21
0.84	7.55	В	1.414	1.88	3000	28	90	20
0.84	10	В	2	2.2	2800	45	83	18

Evolution from Spontaneous Emission

Photon Performance of XFEL-O

- Photon energies: 5 keV < ε_{γ} <20 keV
- Full transverse coherence
- Full temporal coherence
 - 1 ps duration (rms),
 - B.W.=2 meV (rms)
- Adjustable polarization via crossed undulator configuration
- Not Tunable
- 10⁹ photons (~ 1 μJ) /pulse
 - Peak spectral brightness~LCLS

■ Minimum rep rate is (1-100) MHz, the maximum could be 100 MHz limited by crystal heat load → average spectral brightness (10²⁶ -10²⁸) ph/(mm-mr)²(0.1%BW)

Science Drivers for XFEL-O

Inelastic x-ray scattering (IXS) and nuclear resonant scattering (NRS) are flux limited experiments! Need more spectral flux in a meV bandwidth!

- Undulators at storage rings generate radiation with ≈ 100-200 eV bandwidth. Only ≈ 10⁻⁵ is used, the rest is filtered out by meV monochromators.
- Presently @ APS: $\approx 5 \times 10^9$ photons/s/meV @14.4 keV
- X-FELO: ≈ 10¹⁵ photons/ meV
- Coherent imaging
- Measurement of time-resolved, bulk-senstive Fermi surfaces via hard x-ray angle resolved photo-emission spectrsocopy (F. Parmigiani)

Current and Future X-Ray Sources

3WM08: March 19, 2008

Argonne

3WM08: March 19, 2008

Multi-GeV Energy Recovery Linac

- Invented by M. Tigner in 1965 for HE collider
- Cornell proposal as 4th generation x-ray source
- Electron beam qualities determined by the gun→ higher brightness, shorter bunch length, more flexible bunch format than the ring-based 3rd generation sources
- Under study at JAERI-KEK, APS, Daresbury

Ultimate APS ERL Upgrade Concept

- Single-pass 7~8 GeV linac points away from APS to permit straight-ahead hard x-ray short-pulse facility
- Beam goes first into new, emittancepreserving turn-around/user arc
 - Second-stage upgrade would add many new beamlines
- ERL can benefit from very long undulators
 - Higher flux and brightness
 - Could add these using somewhat different geometry
- Ability to store beam unchanged
- Existing injector complex unchanged.

Saturation: As circulating power increases, the gain drops and reaches steady state when gain=loss

E=7 GeV, λ =1Å Q=19 pC (Ip=3.8A), N_u=3000 Mirror reflectivity=90% Saturation power=19 MW

E=7 GeV, λ=1Å Q=40 pC (Ip=8 A), N_u=3000 Mirror reflectivity=80% Saturation power=21 MW

Simulation of Oscillator Start-up

Time-dependent oscillator simulation using GENO (GENESIS for Oscillator) written by Sven

 Taking into account FEL interaction (GENESIS), optical cavity layout, and mirror bandwidth (Reiche)

To reduce CPU

- Follow a short time-window (25 fs)
- Track a single frequency component for all radiation wavefronts since other components are outside the crystal bandpass
- Even with these simplifications, one pass takes about 2 hr

Micro-Temporal Structure G. Dattoli, et. al (1981), P. Elleaume (1985)

Four rms lengths

 $\begin{array}{l} \hline & \tau_{\mathsf{el}} = \mathsf{electron} \ \mathsf{bunch} \ \mathsf{length}, \ \tau_{\mathsf{opt}} = \mathsf{optical} \ \mathsf{pulse} \ \mathsf{length}, \\ & \tau_{\mathsf{M}} = \omega/2\sigma_{\omega\mathsf{M}} \ (\sigma_{\omega\mathsf{M}} = \mathsf{cavity} \ \mathsf{BW}), \ \tau_{\mathsf{s}} = \mathsf{slippage} \ \mathsf{length} \end{array}$

 $\Box \ \tau_{el} >> \tau_{opt} >> \tau_{M} >> \tau_{s}$

Fundamental super mode with cavity "detuning" u

-
$$a_n(\zeta) = \exp[n\Lambda - u\zeta/(2\tau_M^2) - \zeta^2/(2\tau_{opt}^2)]$$

$$\zeta = t - z/c, \ \tau_{opt} = (2\tau_{el}\tau_M)^{1/2}/g^{1/2}$$

$$\Box \ \Lambda = (g-\alpha)/2 - (u/2 \ \tau_M)^2 - 0.5 \ g^{1/2}(\tau_M \ / \ \tau_{el})$$

X-FELO

- □ τ_{el} = 2 ps, τ_{opt} ~ 1 ps, τ_{M} ~0.1 ps (BW of single crystal 4 meV) □ τ_{s} =1 fs
- u < 20 fs, cavity detuning < 3 μ m

Tolerance on mirror angle < 8 nr</p>