RF and Feedback Developments at the ESRF

G. Gautier, N. Guillotin, <u>J. Jacob,</u> J.-M. Koch, J.-M. Mercier, G. Naylor, E. Plouviez, J.-L. Revol, V. Serrière

ESRF

Thanks also to many other colleagues at the ESRF Thanks also to many other colleagues at the ESRF

APS – Argonne National Laboratory, March 14 – 17, 2008 Three -Way Meeting 2008 Way Meeting 2008 – Argonne National Laboratory, March 14 –17, 2008 17, 2008

Existing 352.2 MHz RF system

6 five-cell cavities on the storage ring R/Q = 139 Ω */ cell Qo = 38500 Rs = 26.8 M*Ω *(5 cells) frf = 352.2 MHz Vnom = 1.4 … 2.5 MV 2 couplers:* β *max = 4.4 Max 170 kW / coupler*

ے *Undamped HOM*

- ≥ 2 out of 3 installed klystrons needed to feed the 6 cavities at 200 mA
- \Rightarrow 1 klystron available for the cavity power test stand or to back up operation for any bunch filling mode

3 Way Meeting, Argonne, March 17-19, 2008 RF and Feedback Developments at ESRF J. Jacob, page 2

R

RF operation at 200 mA with safety margin

Nominal configuration at 200 mA:

- \triangleright TRA0 on booster cavities 1,2
- ¾TRA1 on SR cavities 1,2,3,4
- ¾TRA3 on SR cavities 5,6

\triangleright TRA2:

- available for the teststand
- can be switched to replace TRA0 or TRA1 when they have to be shut down

200 mA in case of TRA3 fault:

¾TRA1 on SR cavities 1,2 ¾TRA2 on SR cavities 3,4 \triangleright Cavities 5,6 not powered

Mastering instabilities at 200 mA

RF

- • TCBI – Transverse Coupled Bunch Instabilities
	- \mathbb{Q} \textcircled{r} Emittance increase \rightarrow loss in brilliance
		- \triangleright Resistive wall instability
		- \triangleright Ion trapping
		- [→]Mastered by an increased **chromaticity**
		- ¾ Transverse cavity HOM are masked
- • LCBI – Longitudinal Coupled Bunch Instabilities
	- \mathbb{Q} \mathcal{F} Energy spread \rightarrow loss in brilliance, mainly for higher harmonics of undulator radiation
		- ≻ Instabilities driven by longitudinal HOM from 6 five-cell Cu cavities for I_{beam} $>$ 50 \ldots 130 mA, depending on T_{cav}
		- [→]Stabilisation by **Landau damping** thanks to transient beam loading from nonsymmetric **fractional filling** → **200 mA in 1/3 et 2/3 filling**
		- \rightarrow 1998: Improved **Cavity temperature regulation T_{cav} = T_{set} ± 0.05°C,** for a precise control of the HOM frequencies
			- ⇒ Stable beam at **200 mA** in **uniform** and symmetrical 2 x 1/3 filling

Further Current Upgrade

• 300 mA

- ¾Achieved in Machine Physics test in December 2006
- \triangleright Foreseen in USM after tests with individual beam lines in 2008/2009

•500 mA

- ¾Not scheduled for the coming accelerator upgrade
- \blacktriangleright Subject to R&D for the coming 10 years, in preparation of a possible later upgrade
- \triangleright Any new RF design will have to be compatible with a possible increase to 500 mA

Increase to 300 mA

- \checkmark No intrinsic limitation: neither in RF power, nor from thermal or radiation load
- ¾ However, since 2003 unsuccessful search for a stable working point
	- $\rightarrow \;$ HOM driven LCBI above 200 $...$ 250 mA for any T $_{\sf cav}$
- ⇒ **End of 2004: Decision to implement a digital bunch-by-bunch feedback system** (already reported at last 3 WM in June 2006)
	- \blacktriangleright LFB (Longitudinal Feedback): to damp HOM driven LCBI
	- ¾ TFB (Transverse Feedback): allows operation at zero chromaticity and to damp ion instability at 300 mA
	- \blacktriangleright Goal: **deliver 300 mA to users** for limited periods of time in 2008 / 2009
- \rightarrow December 2006: 300 mA of stable beam successfully stored during machine physics shifts thanks to LFB

Part I

Bunch-by-Bunch Digital Feedback Systems 1. LFB2. TFB

R

LFB figures

RF

- • Highly sensitive bunch phase measurement
	- \blacktriangleright 1 fs/turn
	- \Rightarrow $\,$ minimum feedback kick: 4.7 V, well within 600 V kicker spec
- •14 bit ADC: $\Delta\tau_{\text{max}}$ = ±8 ps
- • Efficient pre-filtering of spurious signals not related to the unstable synchrotron oscillations:
	- \blacktriangleright Mode 0 oscillation, beam loading phase transients, injected beam oscillation…
- •ESRF naturel longitudinal damping time

 \triangleright $\tau_s = 3.6$ ms

- • Phase measurement requires a numerical differentiation to compute proper voltage kick: FIR centered on f_{s} \Rightarrow limits $\,$ active damping time:
	- ϵ τ_{LFB} = 0.5 ms $\approx \tau_{\text{s}}$ / 7
	- ⇒ Allowed to store 300 mA, but **Combination** of HOM control by Cavity Temperature regulation and LFB damping required !

FPGA – digital signal processor

Bunch by bunch feedback:

- •parallel processing of all 992 bunches
- •processes shifted by *Trf = 2.84 ns*
- •Each process sequenced at T_o = 2.8 μs

Virtex-II from Xilinx

- ¾100 Gops
- \triangleright Code development with System Generator (Xilinx / The MathWorks)
- \blacktriangleright Data transfer in and out:
- ¾ Four 14 bit ADC channels 4 x 88 MHz
- ¾ One 14 bit DAC (DDR) at 352 MS/s
- \blacktriangleright Fast DDR2 RAM – 64 MB

LFB: Grow-Damp measurements to tune HOM

3 Way Meeting, Argonne, March 17-19, 2008 RF and Feedback Developments at ESRF J. Jacob, page 12

RF

Transverse feedback - TFB

Vertical kicker layout

- •Kicker design: relatively straightforward but HV issues in 4x10mA filling...
- •Vertical kicker strength: low (typical cleaning with a 25V/cm field)
- • Position measurement resolution demanding; 4 μm over 200 MHz of bandwidth required to preserve 20 pm vertical emittance

Horizontal kicker layout

Half view:

- Stripline
- U shape to increase the shunt impedance

R

F

- • Horizontal kicker strength: demanding due to the large spurious kick of the injection (1.5 mm for β=36m); it will limit the damping time.
- • Signal processing : processing speed and power similar to the longitudinal case.

TFB figures

- • Turn by turn resolution: 4 μ m at .2mA/bunch (200mA)
- •Loop filter:

Vertical: 8 taps FIR, 3 SR revolution periods Horizontal:7 taps FIR, 3 SR revolution periods Simplest shape: sine shape, no windowing

•Damping time:

> Vertical system: 20 turns (50 μs) *limited by the algorithm latency, still 20 dB gain margin*

Horizontal system: 100 turns (280 μs)

limited by the ratio between the single turn kick amplitude and the amplitude of the injection oscillation due to the kicker bump imperfect closure.

R

TFB - some results

- • Damping of resistive wall instability
	- ¾ \angle 200 mA with $\xi_{\rm x}$ = 0 and $\xi_{\rm z}$ = 0
- • TFB z against vertical blow up due to ion trapping in uniform fill
	- \blacktriangleright At 300 mA:
		- $\Diamond\;\;{\sf TFB}_{\sf z}$ = OFF: ion trapping \to vertical blow up \to after 20 min beam loss
		- \Diamond TFB_z = ON: vertical blow up limited to $\varepsilon^{}_{\text{z}}$ = 80 pm
	- \blacktriangleright At 200 mA in USM:
		- \Diamond $~\epsilon_{\sf z}$: 35 \to 25 pm, applied since mid 2007
- • At given chromaticity: Increase of single bunch head tail instability thresholds by a factor 2.5 to 3

Part II

ESRF RF upgrade for the coming decade

3 Way Meeting, Argonne, March 17-19, 2008 RF and Feedback Developments at ESRF J. Jacob, page 18

R

Summary / tests with 300 mA at ESRF

• 11 MV necessary for Robinson stability

R F

 All 3 transmitters in operation \Rightarrow no margin for test stand or in case of equipment failure

LFB:

•

• Stabilisation of HOM up to 300 mA

TFB vertical

• Needed to control beam blow up due to ion trapping

Existing system

 \blacktriangleright At 300 mA: all SR transmitters are needed

- •TRA1 $\;\rightarrow$ Cavities 1 & 2
- •TRA2 $\;\rightarrow$ Cavities 3 & 4
- •TRA3 $\;\rightarrow$ Cavities 5 & 6

 \Rightarrow $\,$ No spare transmitter = no safety margin

- ¾ Re-establishing a safety margin at 300 mA would require 2 more 1.3 MW transmitters:
	- $\rightarrow \,$ One to back up TRA0 (booster), TRA1 and TRA2 (SR)
	- \rightarrow One to back up TRA3 (SR)

R

Transmitter upgrade

- \bullet Existing RF transmitters:
	- ¾Only one klystron supplier left
	- ¾ These klystrons are particularly subject to instabilities: none is presently in operation at ESRF
- • Proposed upgrade with Solid State Amplifiers (SSA):
	- ¾Replace klystron transmitters with SSA
	- \blacktriangleright $▶$ SSA highly modular \Rightarrow redundant \Rightarrow intrinsically reliable
	- ¾ Good experience at SOLEIL, yet still R&D to find even better transistors
	- ¾20 dB less phase noise
	- \triangleright No HV
	- \triangleright No X rays
	- \triangleright Easy maintenance
	- ¾ Likely to become the new standard for high power CW RF applications

Solid State Amplifiers at SOLEIL

- $\leftarrow \, 50$ kW tower:
	- tested at 45 kW
	- normally operated up to 40 kW
	- \downarrow 8 towers operated at 2 x [150 to 160 kW]

Photos: Courtesy SOLEIL

3 Way Meeting, Argonne, March 17-19, 2008 RF and Feedback Developments at ESRF J. Jacob, page 22

R F

Solid State Amplifiers at SOLEIL

R&D for better transistors

- • GOAL: raise the operation power from 40 to 45 kW/tower
	- ¾SOLEIL booster: SEMELAB transistors VDMOS D1029UK05
	- ¾ SOLEIL SR: Improved performance with POLYFET LDMOS LR301 (V4)
	- ¾ Prototype tests at SOLEIL with BLF 369 from NXP:
		- $\Diamond\,$ Very robust device
		- ◊ Draw back: larger capacitances require larger compensating capacitors operated at high temperature, solutions under development at SOLEIL
		- \diamond BLF 369 is presently the best candidate for an ESRF amplifier
	- ¾ New BLF 574 from NXP: first samples under test at SOLEIL
		- \lozenge 50 V bias instead of 30 V will bring 10 % better efficiency and reduce the losses
		- \Diamond Expected to be more resistant

Procurement of solid state amplifiers

- Collaboration with SOLEIL
- Some companies already interested in supplying complete SSA systems:
	- ¾ One company: possible license agreement with SOLEIL
	- \triangleright Another company proposing its own design

R

New Cavities for the ESRF

RF

- • Optimized for high beam current
	- ¾ At least 1 coupler per cell (instead of existing 2 couplers / 5-cell-cavity) \Rightarrow Single cell cavities
	- ¾ Strong HOM damping for unconditional stability at 300 mA without active HOM damping
	- ¾ Design goal including necessary margins:
		- ◊500 mA in terms of power
		- ◊1000 mA in terms of HOM damping

Single cell NC HOM damped cavity

CARACITES

EUROPEAN COMMISSIO

•

•

Cut off

460 MHz

Multibunch – HOM driven LCBI

Planned RF upgrade / coming 8 years

- ¾ Replacement of all 6 SR five-cell cavities with 6 x 3 new single cell HOM damped cavities
- ¾ 9 MV / 300 mA: 18 cavities at 120 kW
- \triangleright 18 solid state amplifiers
	- \lozenge 3 towers x 45 kW = 135 kW: sufficient margin
	- \Diamond R&D for improved transistors therefore essential
	- \Diamond Note that currents above 300 mA will be possible by adding a 4th tower to each SR amplifier
- \triangleright 4 amplifiers x 3 towers for the booster cavities
	- \diamond Can be switched ON/OFF within 10 seconds: better adapted to frequent top up operation than klystrons

Scheme for additional long beamline ID7

7m straight with 3 new single cell cavities

- •Transform Cells 7 and 23 into long straights
- • Replace SR cavity 3 with 3 single cell cavities in the middle of cell 7
	- \triangleright Creates new space for a long beam line ID7 with 2 ID's
- • Replace SR cavity 4 with 3 single cell cavities in the middle of cell 23
	- \triangleright Keeping existing 2 canted undulators in ID23: just insert 3.2 m of RF
- •Scheme could also be applied to cells 5 / 21 and cells 9 / 25

