

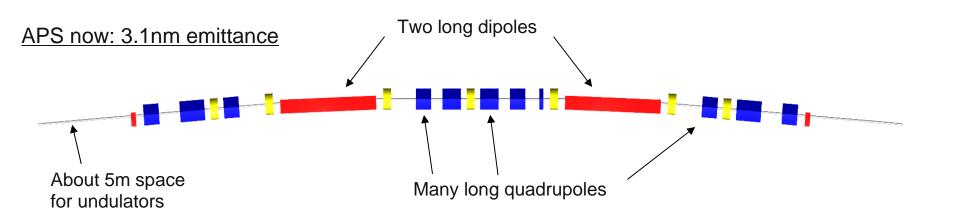
... for a brighter future

UChicago Argonne

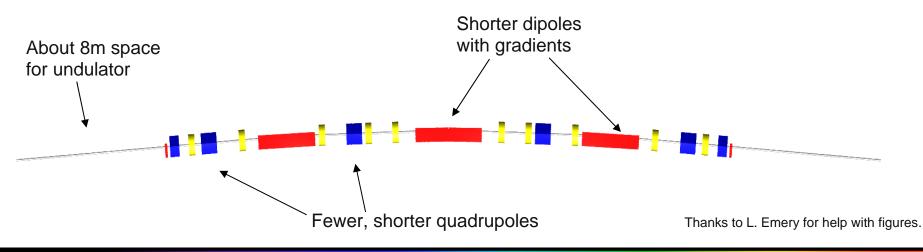
A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

APS Accelerator and ID R&D

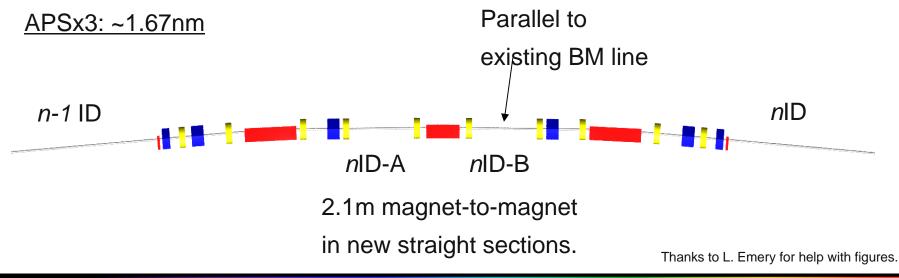
Efim Gluskin Accelerator Systems Division Advanced Photon Source


APS, ESRF, SPring-8 Meeting March 18, 2008 Advanced Photon Source, Argonne

Outline

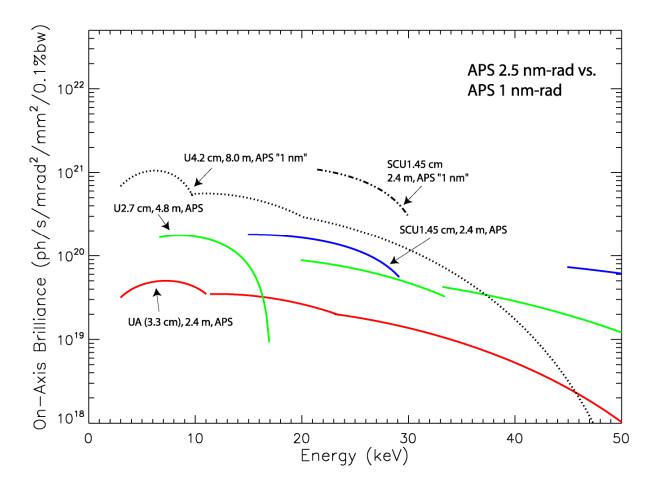

- APS x-ray source upgrade
- Short x-ray pulses project
- Superconducting undulator

Triple-Bend Design (APS1nm)


Possible upgrade: 1nm emittance

Another Option: APSx3

- This is an evolution of the 1nm lattice
- Offers three times as many ID beamlines
- Could provide a three-pole wiggler for beamlines that still want bending-magnet-like source
- Downside: Emittance doesn't improve much


Source Parameters Compared to APS Now

Case	# of Sectors	x rms (microns)	x' rms (microrad)	y rms (microns)	y' rms (microrad)
Today	40	275	11.4	8.5	3
APS 1nm	40	~120	~10	~7	~1
APSx3	40	~120	~14	~13	~1

- Upgraded ring would run at 200 mA, 7 GeV
- Insertion devices would be customized to, e.g., maximize brightness consistent with power limitations of front ends.

On-Axis Brilliance Tuning Curves for The APS 1 nm-rad Lattice

Beam Energy 7.0 GeV

Beam Current 100 mA (APS), 200 mA (APS 1 nm-rad), Coupling 1.0%

An "Outfield" ERL Option (G. Decker¹)

Advantages

- Linac points away from APS² to give straightahead FEL hall³
- Beam goes first into new, emittance-preserving turn-around arc⁴
- Avoids wetlands etc. by using narrow corridor for linac and return line

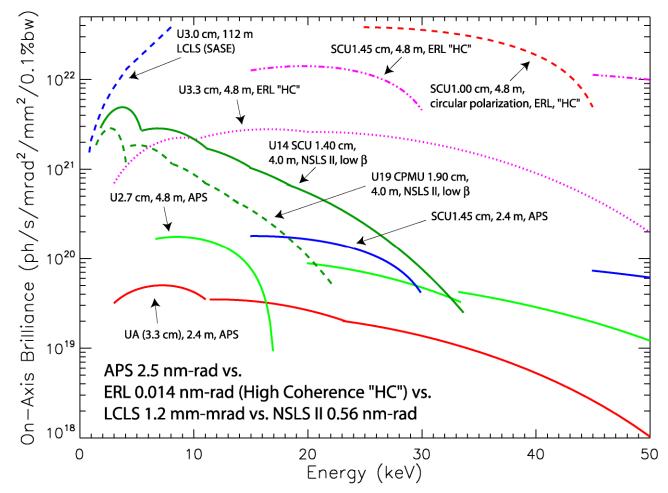
Issues

- Big and expensive
- Turn-around should be *bigger* than shown
- Beam goes wrong way around the APS in this sketch (readily fixed)
- No space for really long undulators.

¹G. Decker, "APS Upgrade External ERL Option," 9/27/06.
²M. Borland, "ERL Upgrade Options and Possible Performance," 9/18/06.
³M. Borland, "Can APS Compete with the Next Generation?", May 2002.
⁴M. Borland, OAG-TN-2006-031, 8/16/06.

APS ERL Parameters (Scaled to 7 GeV from Cornell ERL*)

	APS		ERL	
	now	High flux	High coherence	Ultrashort pulse
Average current (mA)	100	100	25	1
Repetition rate (MHz)	0.3~352	1300	1300	1
Bunch charge (nC)	0.3~60	0.077	0.019	1
Emittance (nm)	$3.1 \ge 0.025$	0.022 x 0.022	$0.006 \ge 0.006$	$0.37 \ge 0.37$
Rms bunch length (ps)	$20 \sim 70$	2	2	0.1
Rms momentum spread $(\%)$	0.1	0.02	0.02	0.3


Promise of very high brightness

- Extremely low emittance, equal in both planes
- Very low energy spread
- Current from 25 to 100 mA with ultra-low emittance, ps pulses
- Option for less current with high charge, fs pulses.

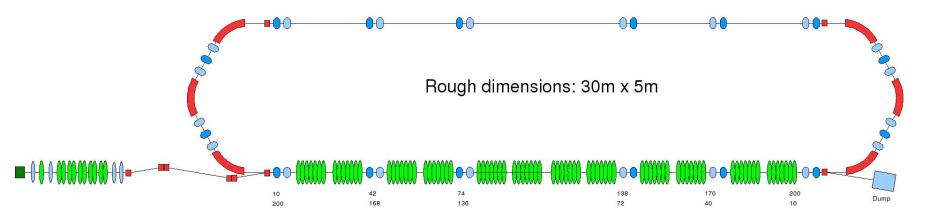
G. Hoffstaetter, FLS 2006 Workshop, DESY.

On-axis Brilliance Tuning Curves for Current APS Lattice vs. ERL High-coherence Mode vs. LCLS vs. NSLS II

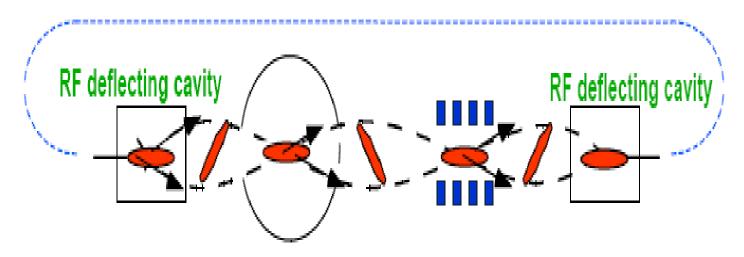
Beam energy: 7.0 GeV (APS), 4.3 – 13.6 GeV (LCLS), 3.0 GeV (NSLS II)
 Beam current: 100 mA (APS), 25 mA (ERL High Coherence "HC"), 500 mA (NSLS II)

APS ERL R&D

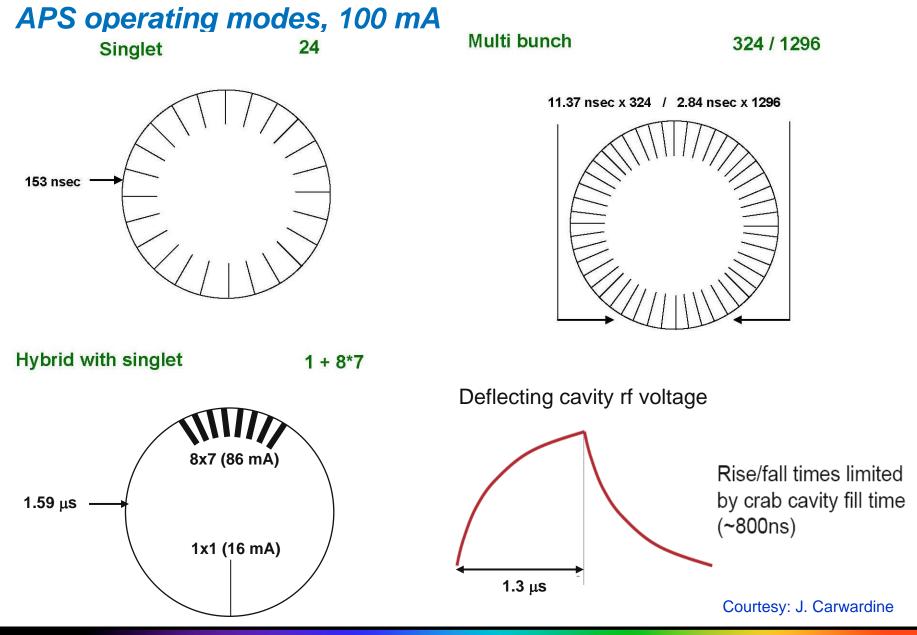
- Four critical areas for ERL R&D
 - Reduction of cryogenic load and resultant reduction of wall plug power requirements
 - Reliable production of ultra-bright, high-average-current electron beams with availability comparable to present-day storage rings
 - Preservation and delivery to users of ultra-low emittance, stable, highaverage-current beams
 - Control of beam losses, to protect both personnel and equipment

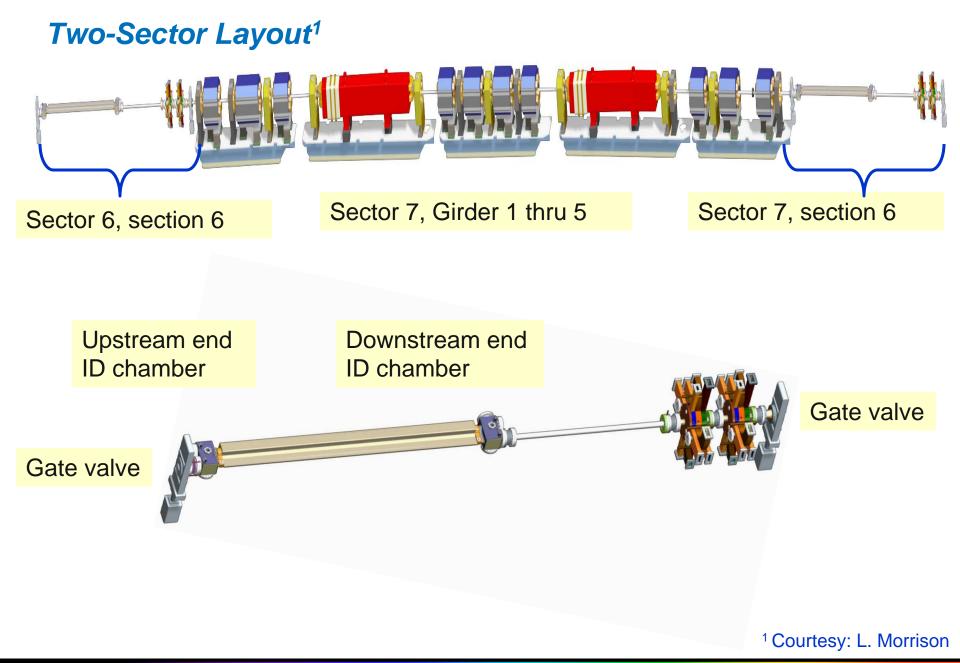

A Need for a Test Facility

- There is a definite need for a beam test facility to test and characterize components of a the full-size APS ERL
- This can be accomplished with a moderate electron beam energy (~200 MeV) and a low average current (~20 mA)
- The purpose of such facility is to characterize and understand issues such as:
 - Electron source
 - Injection scheme
 - Merger
 - Beam transport at injection energy
 - Ultra-low emittance beams generation and preservation
 - Power handling capabilities of the injector linac (FPC performance)
 - System integration
 - Experience with SRF operation
 - Operational reliability

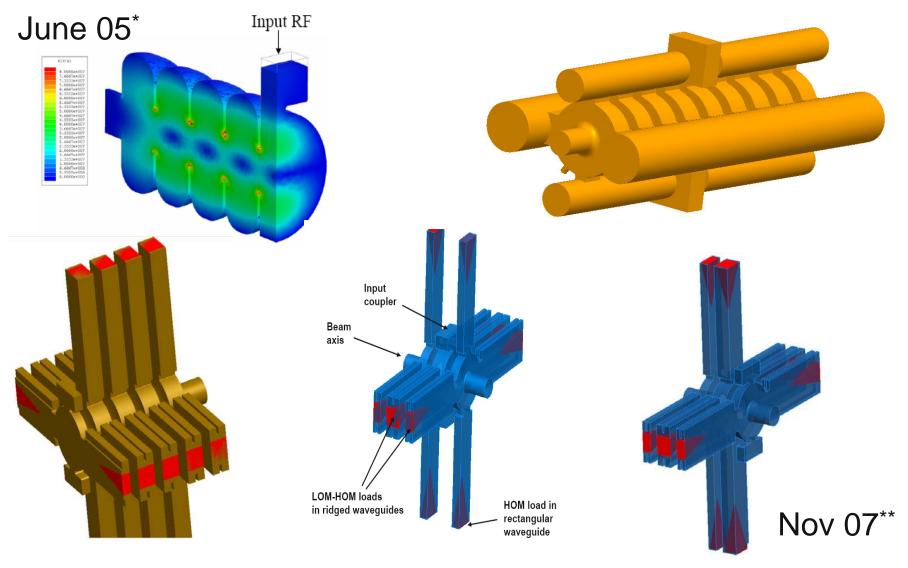

Proposed ERL Test Facility

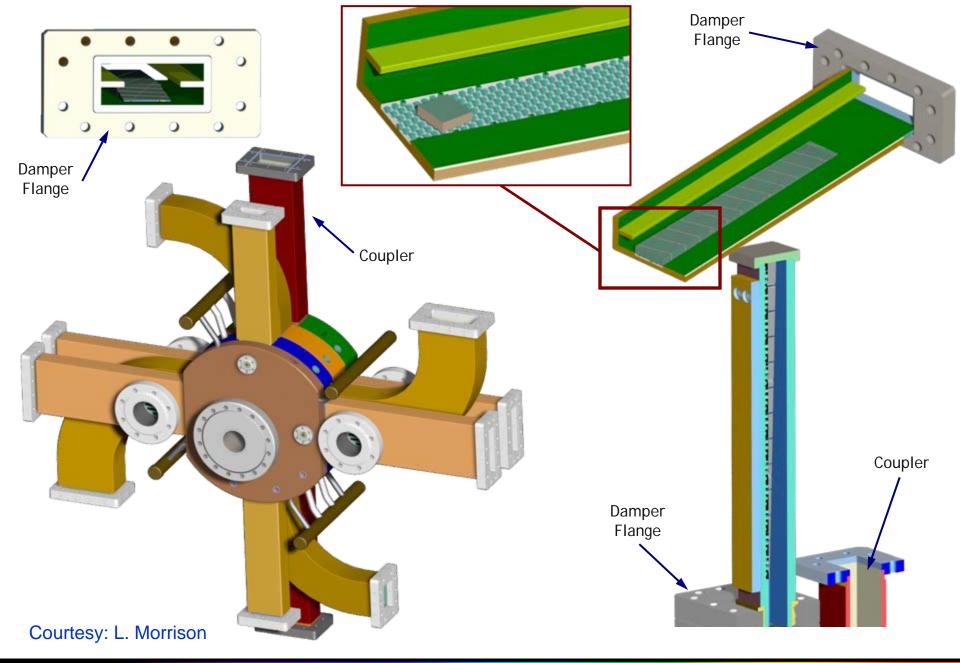
- APS supports building a ~20 mA, ~200 MeV ERL test facility
 - Test predictions related to beam quality and its preservation up to relativistic energies
 - Assess performance and reliability of rf cavities, dampers, and control systems in a realistic high-current environment
 - Investigate beam loss and collimation in an experimental setting
 - Develop high-precision, high-rate diagnostics
 - Address integration issues
- APS is eager to be the host or a strong partner in this endeavor


Crabbing Scheme⁺


- Deflecting cavity introduces angle-time correlation into the electron bunch "crabbing" the beam. B_x kicks head and tail of the bunch in opposite directions in the vertical plane.
- Electron oscillate along the orbit
- Bunch evolution through the lattice results in electrons and photons correlated with vertical momentum along the bunch length
- Second cavity at $n\pi$ phase cancels "kick"; rest of the storage ring unaffected

†A. Zholents, P. Heimann, M. Zolotorev, J. Byrd, NIM A 425(1999), 385




Cavity Design Evolution

^{*} V. Dolgashev, SLAC

** V. Dolgashev, SLAC, G. Waldschmidt, A. Nassiri

APS 2.8 GHz Single-Cell Deflecting Cavity

		Input Coupler / HOM damper
Frequency (GHz)	2.815	
Deflecting Voltage 4 MV * 2		Deflecting cavity
Qo (2K)	3.8 * 10 ⁹	
G	235	
R _T / Q (Ω/m)	37.2	
Beam radius	2.5 cm	
No. Cavities	12 * 2	
Operation	CW	damper
Beam Current (mA)	100	
E _{sp} /V _{defl} (1/m)	83.5	HOM Waveguide damper replaces
B _{sp} /V _{defl} (mT/MV)	244.1	dampers KEK coaxial coupler

Compact single-cell cavity / damper assembly

SCID ACTIVITIES

- Nb₃Sn conductor and undulator model current density and magnetic field studies
- Fabrication and yoke studies.
- Magnetic measurements.
- Cryogenic studies.
- R&D on wire insulation.
- LDRD supported helical undulator studies.

Status of SCID developments

- SCID R&D Program using Nb₃Sn wire is progressing well. Required current densities have been demonstrated on 10 to 20 period models at three different laboratories.
- More than one fabrication technique will work and a few are being tested. We will soon (a few months) be able to choose the technique easiest for manufacture and best able to meet the field requirements.
- A full-scale, 2.4-m long model will be fabricated in-house and tested in a vertical dewar (available at Fermilab).
- Magnet measurement techniques will also be tested soon at the APS and NHMFL.
- Helical undulator models have been built and successfully tested. The results are encouraging and could have important applications in future accelerator projects (ERL, FEL, ILC). This program is an LDRD funded program.

