

... for a brighter future

UChicago
Argonne

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

APS Renewal

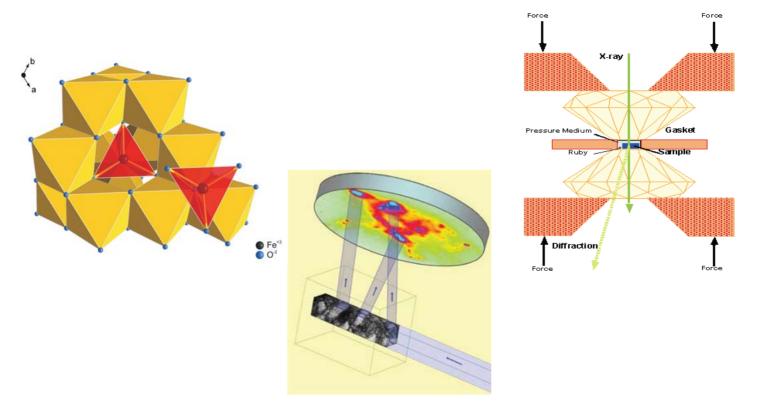
J.M. Gibson Presented at the Three Way Meeting March 18th 2008

Much in common, but vive la difference!

ESRF

Spring-8

New ~3GeV "3 ¹/₂ generation" sources are flourishing

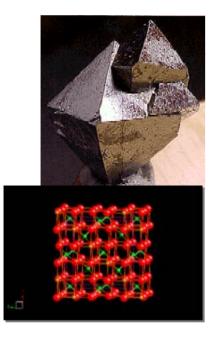


Existing or planned x-ray synchrotron light sources

I believe that the future for the big three is secure even with growing beamports at "3½ generation" sources nearby

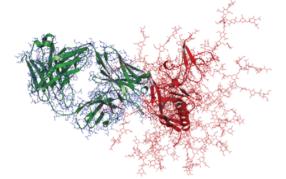
■ They will be uniquely suited for applications needing ~15keV or higher

ESRF, APS and Spring-8 planning major upgrades



APS in 2008 enters its 12th year of operation

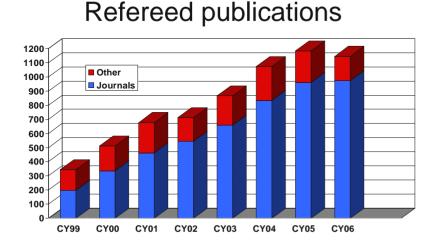
Exciting science in 2008 from APS

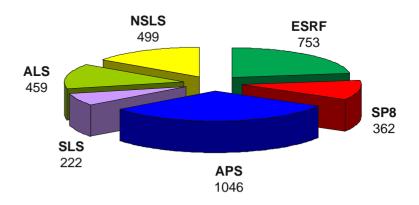


DNA guides nanoparticle assembly

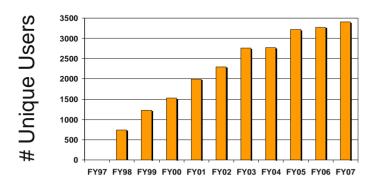
Lodestone holds surprises under high pressure

How muscle works under stress


AIDS virus vulnerability

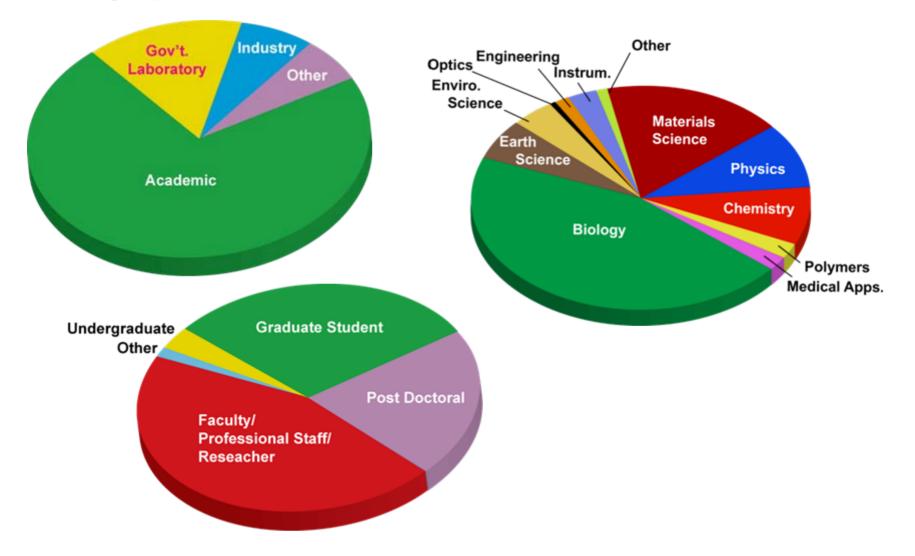

APS scientific impact increasing (by the numbers)

Selected high-impact stats

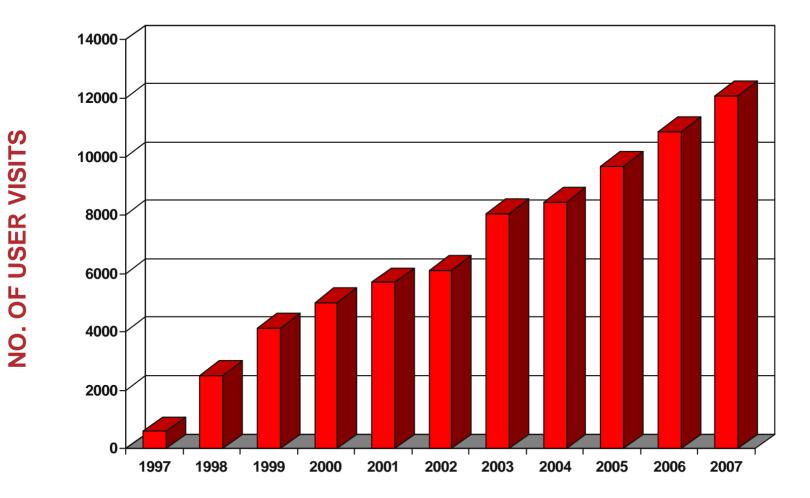


	2004	2005	2006
Cell	7	6	14
All Nature	32	37	37
PRL	21	27	37
Science	11	9	20
PNAS	33	44	43

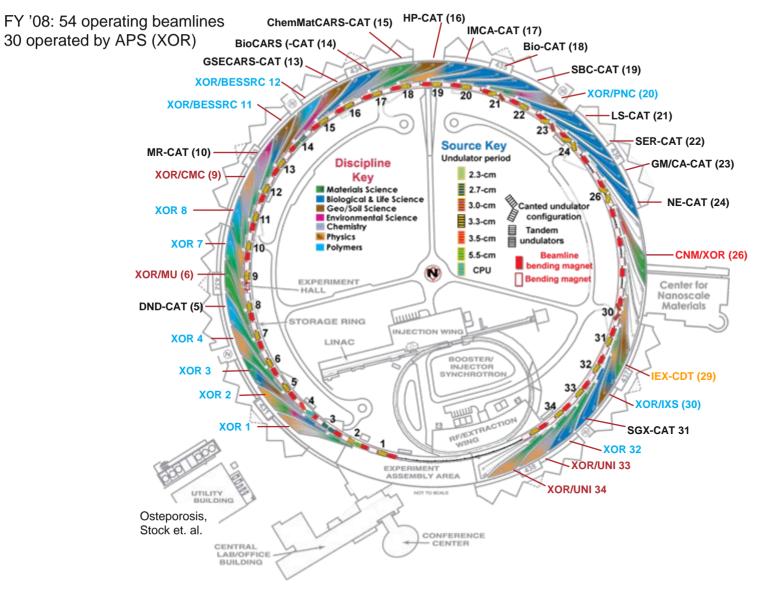
58% journal papers with impact factor >3.5 (2006)


2006 Protein Data Bank deposits

3411 unique users in 2007

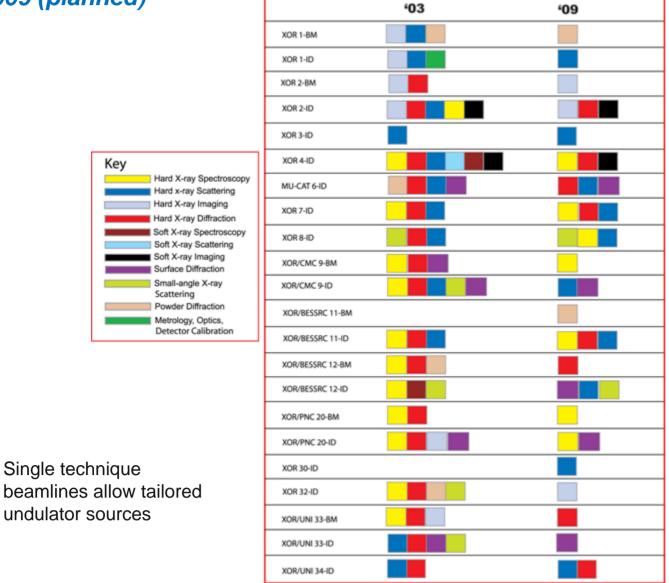


Demographics of APS Users


User Visits by Fiscal Year

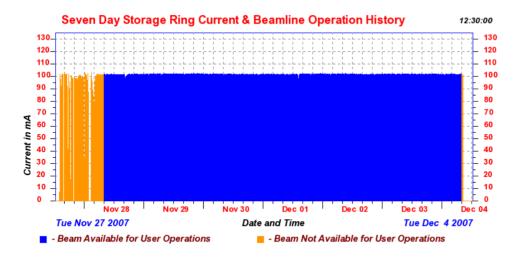
FISCAL YEAR

Beamline map of APS today



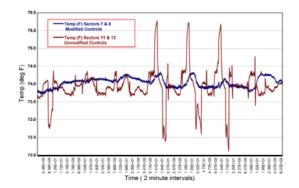
Key CAT sectors Current XOR sectors Transitioning to XOR sector CDT sector Operated jointly (APS, CNM)

XOR = X-Ray Operations and Research

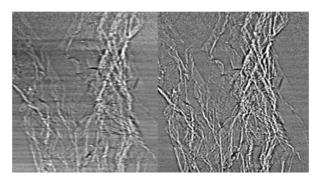

Increasingly optimized XOR beamlines - techniques at the APS – 2003 vs. 2009 (planned)

Science possible by a highly performing machine

- Over the last three years the average availability has been > 98%
 - And the mean time between faults (MTBF) has been over 90 hours
- These are outstanding metrics
 - The result of many years of a sustained QA approach to faults
 - Combined with a well-built machine!
- Our goal has become 97% availability and 70 hours MTBF



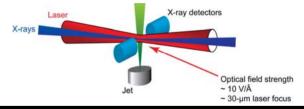
We are concerned that our resources have not been adequate to deal with obsolescence, without which sustaining our goals will be a challenge



Some examples of machine innovation in last three years

a. Improved beam stability

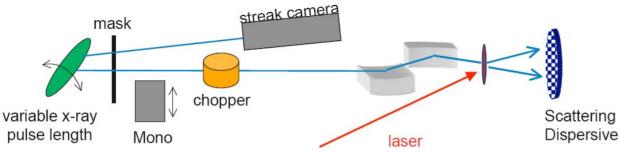
b. Local beta functions

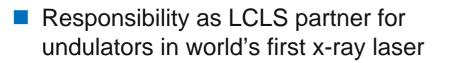

pays off for a dedicated imaging sector (32ID)

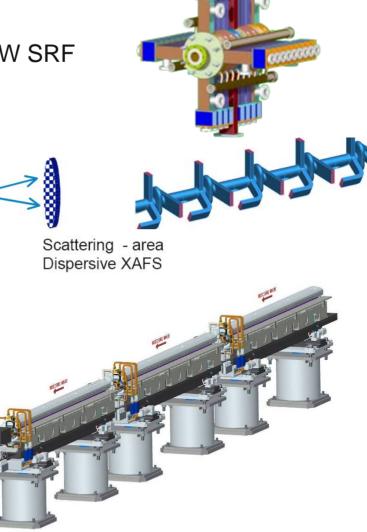
c. Single bunch charge increased by ~2 times to 16 mA

L. Young et al., "X-Ray Microprobe of Orbital Alignment in Strong-Field Ionized Atoms," Phys. Rev. Lett **97**, 083601 (2006).

...driven by x-ray science

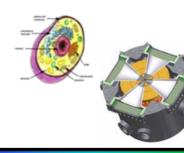


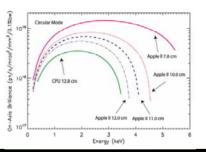



Some medium-term accelerator innovations

Short Pulse X-Ray Project – ps pulses with CW SRF

- Tunable, high rep rate ps pulse source

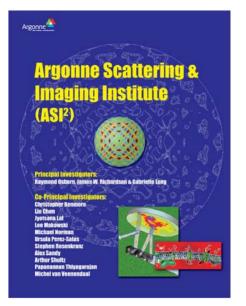

New beamline proposals which emerged from strategic planning since 2004 (more than a dozen workshops held..)

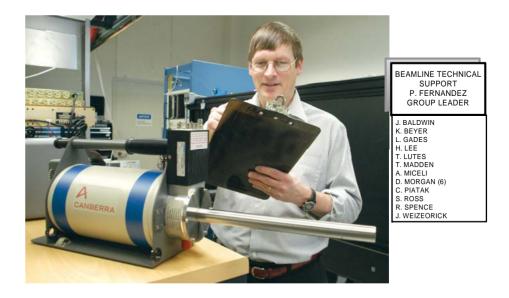

- 1. Transition of several multi-purpose to dedicated APS beamlines:
 - High-energy (E>50 keV) beamline: 1-ID V
 - Imaging beamline: 32-ID Imaging beamline: 32-ID
 - Small/wide angle x-ray scattering: 12-ID-B
 - Time-resolved picosecond scattering: 7-ID-C (NEW)
- 2. Several groups formed partnerships to develop new beamlines:

HP-Sync – a virtual beamline for high-pressure studies V

- Intermediate X-ray Energy Spectroscopy and Scattering
- BioNanoprobe
- Diffraction in High Field

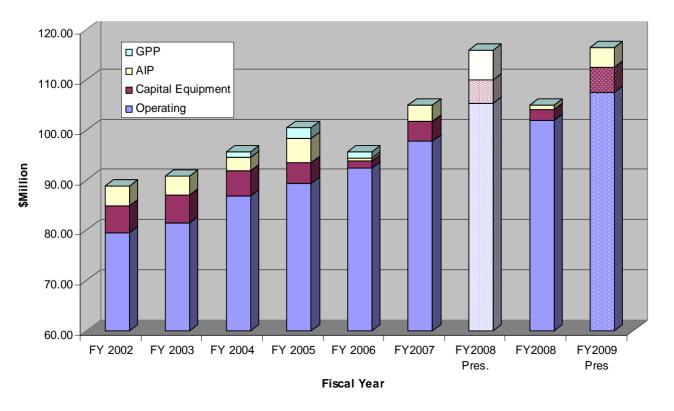
others under development





Software and instrumentation

Software is a critical "weak link" in accessibility to APS



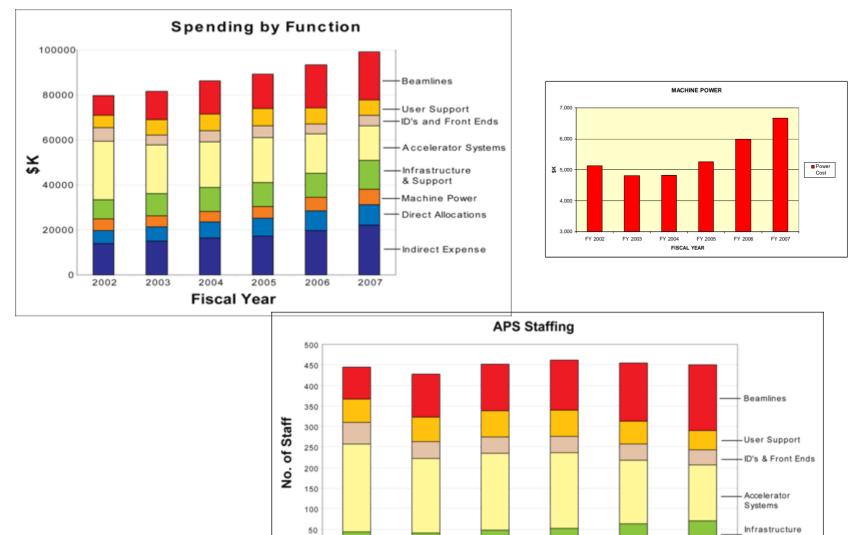
Detector development supported by ANL laboratory strategic LDRD in 2007

and ASI² would make this a national asset for x-ray and neutron grand challenge science (*follows on from NSF funded DANSCE*)

Challenges: The crisis created by the 2008 US Congress Omnibus Funding Bill

Particularly discouraging given broad support for physical science increases All science research in the US faces similar problems, many worse (e.g. HEP) Funding shortfalls forced sudden closure of IPNS

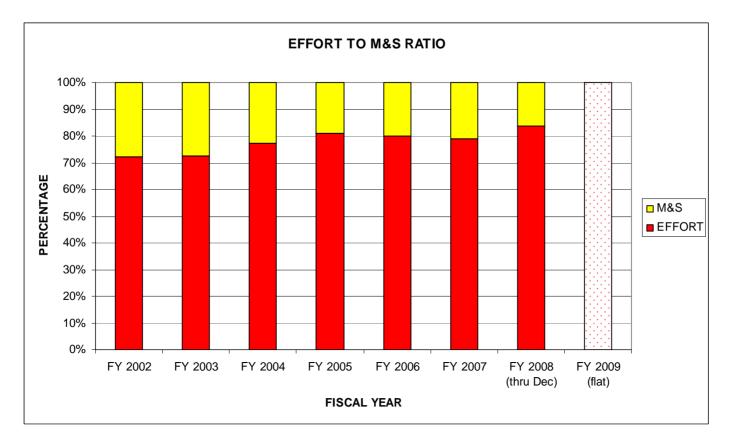
APS FY 2008 Long Range Operations Schedule


Ru	n 200 7- 03			Run 2008-01					Run 2008-02												
Oct	Nov	[Dec	Jan		Feb		Mar	I	Apr	1	May		June	I	July		Aug		Sept	
1 1	4 →	1 1	→ 1		1		1	4 →	1		1		1		1		1	1 →	1		
2 2	4 →	2 1	→ 2	2	2		2	4 →	2		2		2		2		2	1 →	2		2
3 3	4 →	3 1	→ 3	3	3		3	4 →	3		3		3		3		3	1 →	3		<u>``</u>
4 4	4 →	4 1	# # 4		4		4	4	4		4		4		- 4		4	1 →	4		_
5 5	4 →	5 #	1 → 5	j	5		5	4 -	→ 5		5		5		- 5		5	1 →	5		\leq
6 6	4 # #	6 1	→ €	j	6		6	4 →	6		6		6		6		6	1 →	6		0
7 7	#	7 1	→ 7	7	7		7	4 →	7		7		7		7		7		7		Š
8 8		8 1	→ 8	3	8		8	4 →	8		8		8		8		8		8		Month
9 # # 9)	9 1	→ <u></u>		9		9	4 →	9		9		9		9		9		9		
10 30 10	1	10 1	→ 10)	10		10	4	10		10		10		10		10		10		על
11 11		11 1	# # 11		11		11		11		11		11		11		11		11		Reduced
12 12	# #	12 #	4 → 12	2	12		12	1 -	↓ 12		12		12		12		12		12		ŏ
13 13	# # #	13 4	→ 13	}	13		13	1 →	13		13		13		13		13		13		Ē
14 14	#	14 4	→ 14		14		14	1 →	14		14		14		14		14		14		ō
15 15		15 4	→ 15	5	15		15	1 →	15		15		15		15		15		15		Ö
16 # # 16	5	16 4	→ 16	5	16		16	1 →	16	4	16		16		16	4 →	16		16		Õ.
17 30 17	1	17 4	→ 17	·	17		17	1 →	17	4 →	17		17		17	4 →	17		17		
18 18		18 4	→ 18	}	18		18	1	18	4 →	18		18		18	4 →	18		18		Operating
19 19)	19 4	19)	19		19	1 -	↓ 19	4 →	19		19		19	4 →	19		19		р
20 20		20	20)	20		20	1 →	20	4 →	20		20		20	4 →	20		20		Ð
21 21		21	21		21		21	1 →	21	4 →	21		21		21	4 →	21		21		5
22 # # 22		22	22	2	22		22	1 →	22	4 →	22		22		22	4	22		22		at
23 30 # # 23	#	23	23	}	23		23	1 →	23	4 →	23		23		23	4 →	23		23		<u> </u>
24 30 24		24	24		24		24	1	24	4	24		24		24	4 →	24		24		Ö
25 25		25	25	5	25		25		25		25		25		25	4 →	25		25		_
26 26		26	- 26	5	26		26		26		26		26		26	4 →	26		26		Time
27 27	# #	27	27		27	4 →	27		27		27		27		27	4 →	27		27		<u> </u>
28 28	# 1 →	28	- 28	}	28 4	→	28		28		28		28		28	4	28		28		
29 29	1 →	29	- 29)	29 4	1	29		29		29		29		29		29		29		Ø
30 # # 30	1 →	30	- 30)			30		30		30		30		30	1 →	30		30		
31 <u>30</u> 4 →		31	31]		- 31				31				- 31	1 →	- 31				
User Oper User Oper Lattice	ation in Red (RHB)	duced Ho	orizontal B		1		l Fill -	(singlet s - Non)	20 30	Machine S Maintenar Shifts set Machine I	nce taside	e for Stud		ed		Weeke Lab Ho			

Top-Up Operations is standard unless indicated in fill pattern

Fill pattern is 24 singlets unless otherwise indicated by number

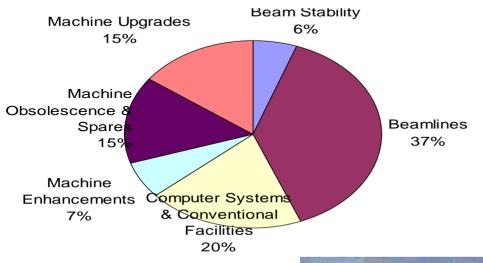
Functional analysis of APS DOE operating budget and staffing



Fiscal Year

& Support

Effort ratio as a fraction of total budget for APS divisions



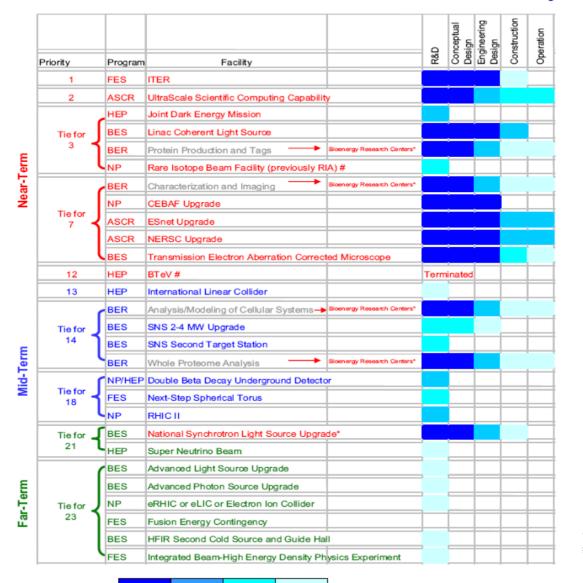
Some amelioration from external income (~5% annually)

We cannot continue to defer machine and beamline maintenance

Allocation of resources to accelerator and beamline improvements, repairs:

For 2006,7,8 we have allocated only \$12M capital and accelerator improvements (4% ops). Normal capital budget is ~10% ops, is still insufficient

"painting the bridge"

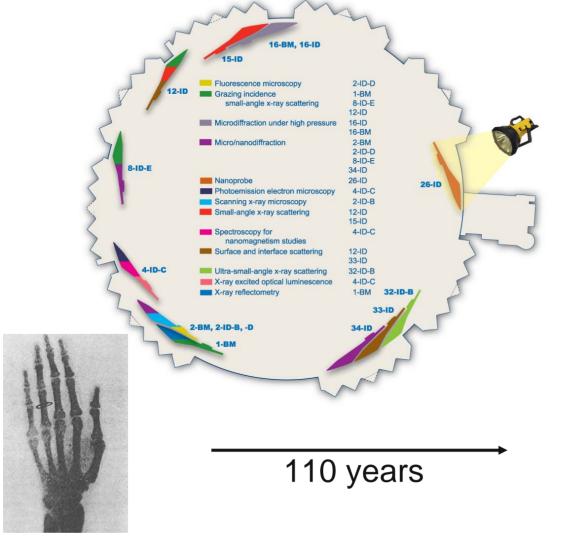


Some science areas where we see great growth potential

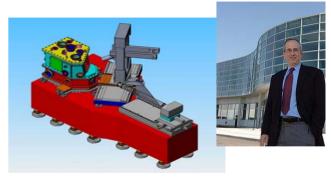
Biology outside protein crystallography Magnetism Inelastic x-ray scattering for Condensed Matter Physics, Geophysics, Biophysics Nanoscience Intermediate energy x-ray scattering Catalysis...

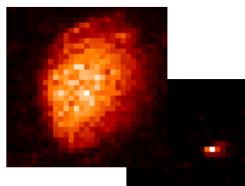
Status of Facilities for the Future: 20-Year Outlook – By the End of FY 2008

Ray Orbach 9/21 update to BESAC



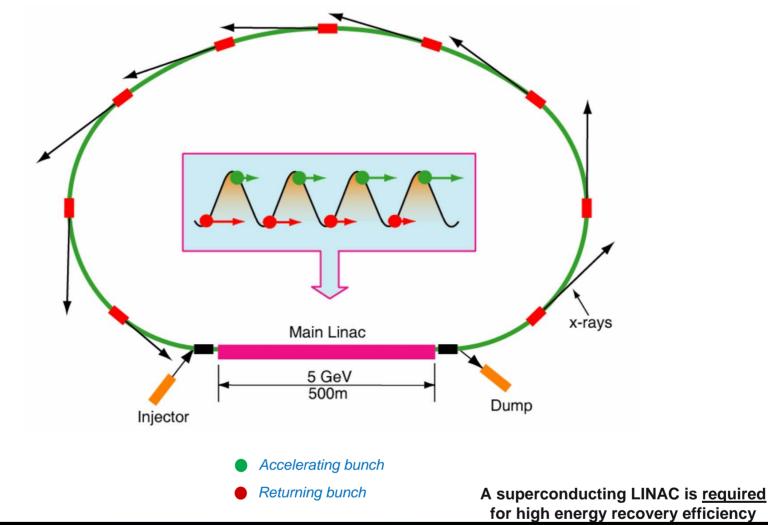
*Technology readiness changed # Changed due to planned facility abroad


75-100% 50-75% 25-50% > 0% complete

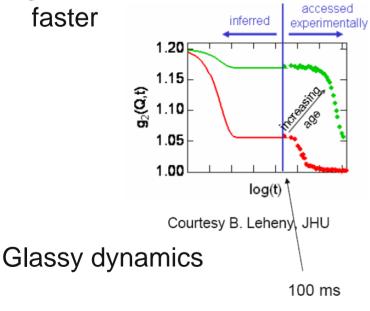


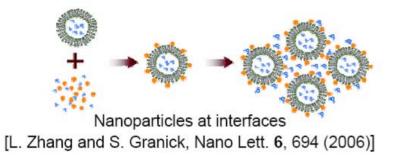
APS science at the nanoscale (predominantly imaging or focusing) will benefit from increase source brilliance

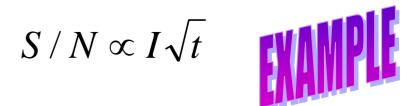
New nanoprobe jointly with Center for Nanoscale Materials ~10nm resolution aim in hard x-ray region

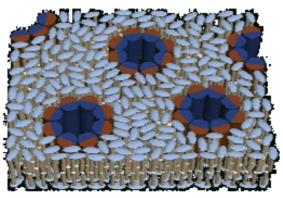


Cornell University

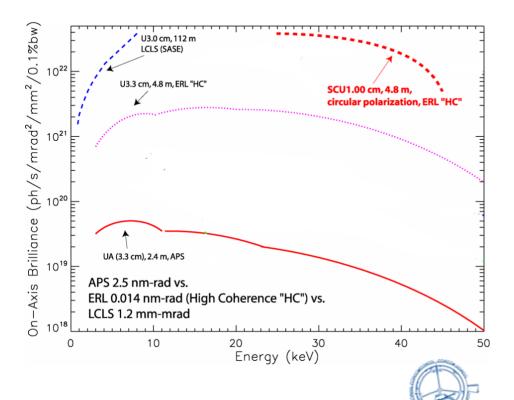

Energy Recovery Linac






An ERL would produce almost fully-coherent illumination (transversely) => probing complex materials dynamics by x-ray photon correlation spectroscopy (XPCS)

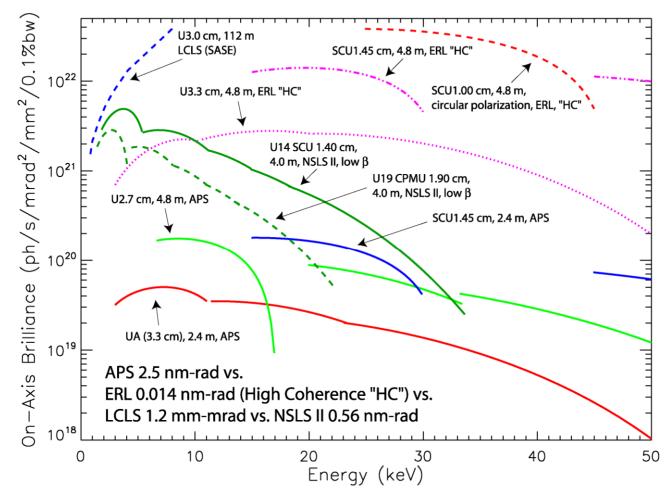
e.g. Photon correlation spectroscopy becomes 4 orders of magnitude



Dynamics of membranes

Better detectors will reach sub- μ s

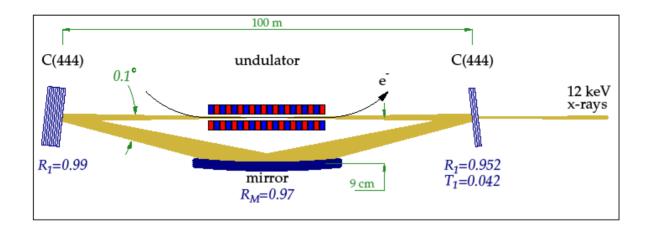
What would an ERL offer?


We continue to consider other options, but are now targeted on the ERL

Substantially spatially-coherent source ("like a laser")

- It can put >100 times more flux into a <10nm probe and improve phase contrast compared with a storage ring
- And deliver to many users
- It offers pulses 100 times shorter or less (in the sub-ps regime)
 - Does not rival FEL for peak brilliance
 - But compatible with FEL upgrade as well
- Natural upgrade path for storage ring such as APS
 - Could be done without compromise or major disruption

On-axis Brilliance Tuning Curves for Current APS Lattice vs. ERL High-coherence Mode vs. LCLS vs. NSLS II

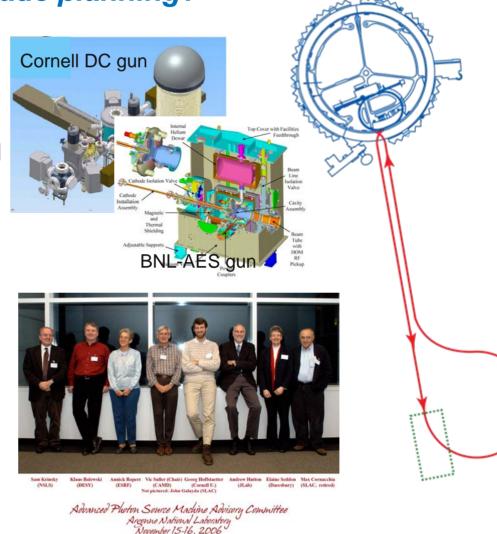

Beam energy: 7.0 GeV (APS), 4.3 – 13.6 GeV (LCLS), 3.0 GeV (NSLS II)
 Beam current: 100 mA (APS), 25 mA (ERL High Coherence "HC"), 500 mA (NSLS II)

R&D Hilite: Cavity laser might become possible with ERL beam

K.J. Kim and Y. Shvydko

Diamond cavity for the X-FEL Oscillator

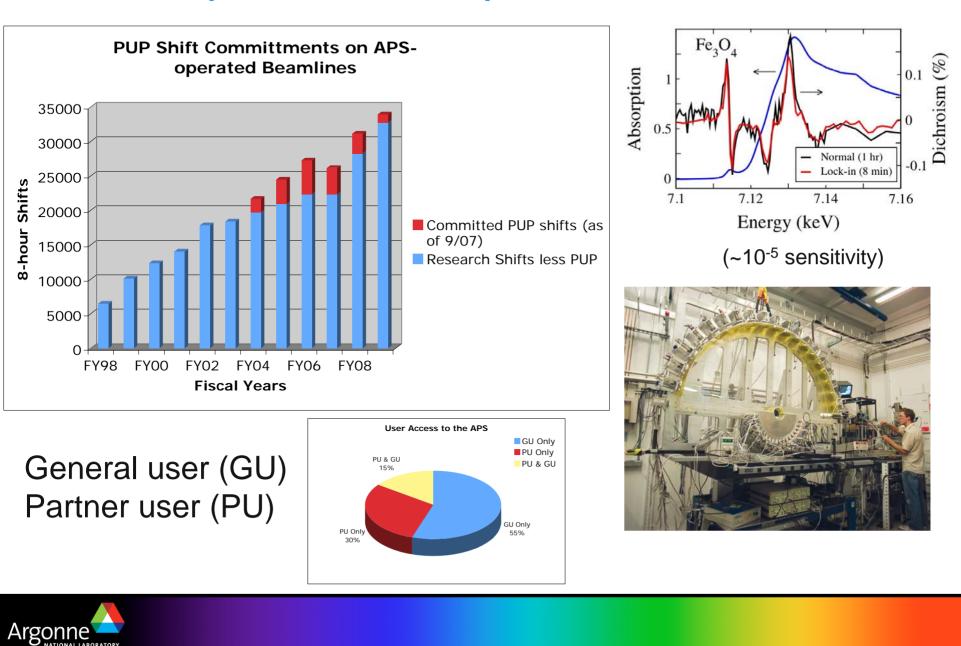
$R_1 imes R_2 imes R_M = 0.91$ $T_1 \simeq 0.042$



Fully coherent (temporal and spatial) x-ray laser source!

Where are we now on upgrade planning?

- Serious R&D is required for APS upgrade (esp. gun and RF)
- R&D proposal submitted to DOE strengthens international effort
 - Leveraged by ANL LDRD and accelerator institute
- During R&D phase there is time to consider all options
- Major workshop with users planned for October 20-21 2008
- Meanwhile, BESAC plans to evaluate user community needs which will drive DOE-BES plans
- Of equal priority to us is development of new and dedicated beamlines, instrumentation, detectors and software to expand imaging and ultrafast capabilities


APS RENEWAL 5-Year Plan

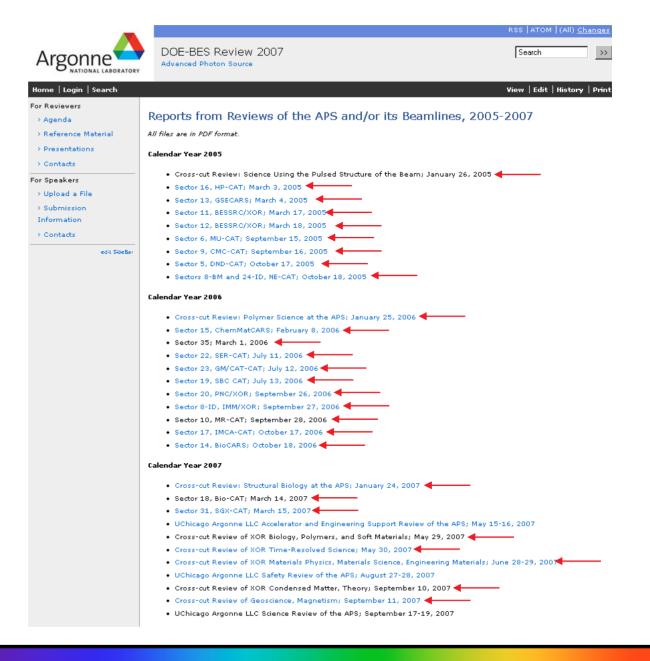
Extra material on APS user program and internal reviews

Limited scope Partner User Proposals bear fruit

Scientific Advisory Committee (SAC) Members

SAC Committee Members: Jens Als-Nielsen, Michelle Buchanan, Slade Cargill, Howard Einspahr, Miles Klein, Richard Leapman, Dan Neumann, Piero Pianetta, Michael Wasielewski, Soichi Wakatsuki, Glenn Waychunas, Donald Weidner, Pierre Wiltzius, Wei Yan, Tim Graber and Denis Keane

APS Reviews


Internal

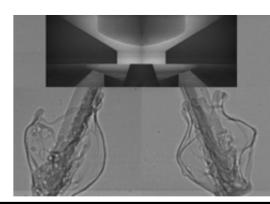
and

External

Red arrows

indicate internal reviews in which SAC members participated.

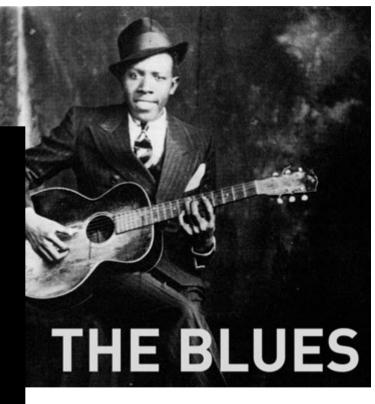
New Internal SAC Review Process: Eight subject areas proposed for cross-cut reviews Proposed 2009 reviews


- Atomic, Optical, Molecular, and Chemical Science
- Condensed Matter and Materials Physics
 - (includes magnetism, superconductivity, and emergent materials)
- Engineering Applications/Applied Physics
 - (includes deformation, cements and mortars, shape memory alloys, superalloys, liquid sprays)
- Geological, Environmental, and Planetary Sciences
- Macromolecular Crystallography (MX)
- Materials Science and Technology
 - (includes photonics, semiconductors, nanomaterials, and liquid crystals)
- Polymers, Soft Materials, and Biology (excluding MX)
- Surfaces, Interfaces, and Thin Films

Combined with short sector management reviews

Conclusions

- Despite short-term difficult national budget picture, APS is growing and developing renewal plans for the short-term, medium-term and long-term including a major upgrade
- Science drivers towards the ultra-small (~1nm) and ultrafast (~1ps)
- The Energy-Recovery LINAC, developed by Cornell and also planned by KEK, seems the most promising upgrade path for APS
 - R&D is ongoing
 - Major user workshop planned for this fall
- The big three facilities will retain their niche in high energy x-rays
 - And we benefit from working together
 - At the least through sharing information
 - But co-operative projects are of high value
 - e.g. Scientific software?



Vive La Difference!

