In-situ X-ray Diffraction of Phase Transformations in Nanostuctured Reactive Multilayer Foils.

J.C. Trenkle, ¹ L. Koerner, ² M.W. Tate, ² S. Gruner, ^{2,3} T.P. Weihs, ¹ T.C. Hufnagel ¹

¹Johns Hopkins University, Baltimore, MD, U.S.A.; ²Cornell University, Ithaca, NY, U.S.A.; ³Cornell High Energy Synchrotron Source, Ithaca, NY, U.S.A.

Introduction

Reactive multilayer foils are composed of nanoscale layers of materials that can sustain a self-propagating exothermic reaction when a thermal pulse is applied [1-5]. For a complete discussion of reaction mechanisms, see ref. [4]. The reaction zone is ~100 μ m wide and propagates at ~1-10 m s⁻¹, reaching temperatures in excess of 1500 °C in less than 100 μ s [4,5]. These reaction characteristics provide a unique opportunity to study kinetically limited phase transformations.

We have used a pixel array detector (PAD) with microsecond temporal resolution to study these phase transformations *in-situ* in Al/Ni and Zr/Ni reactive multilayer foils at the Cornell High Energy Synchrotron Source (CHESS).

Methods and Materials

Scattering was done in transmission at CHESS D1 beam-line, which has a flux of 10^{10} photons s⁻¹ mm⁻¹, on free-standing (~20-40 μ m thick) Al/Ni and Zr/Ni reactive foils with predicted overall compositions of Al₃Ni₂ and near Zr₂Ni (a line compound), respectively. We used a beam energy of 8.2 keV and a spot size of \leq 200 μ m, which is similar to the width of the reaction zone.

We initiated the reaction in the foils using a resistivelyheated filament. Data collection by the PAD was triggered through an optics system, which detected light emitted from the propagating reaction front as it approached the x-ray beam. The PAD, which is 15 x 15 mm with 150 x 150 μ m pixels, was centered on diffracted beams, capturing partial diffraction rings in a 30° to 50° 20 range.

Detector integration times ranged from 50 μ s to 30 ms. The PAD stores eight progressive frames per experiment in each pixel. We introduced initial time delays in the data collection in order to acquire diffraction data out to ~500 ms after the reaction front had passed the x-ray beam.

Results

In both multilayer systems, the initial reaction occurs within the first 100 μ s and forms one or more of the final phases, without any metastable intermediate phases being observed. The Zr/Ni reactive foils, for example, form orthorhombic ZrNi first, with tetragonal Zr₂Ni being first detected some 120 ms later (during cooling) and taking an additional 100 ms to grow to completion (Fig. 1). In the Al/Ni reactive foils, all final phases, trigonal Al₃Ni₂ and cubic AlNi, form simultaneously during the first 100 μ s.

Discussion

From phase diagrams and predicted compositions, the expected stable phases are Al_3Ni_2 +AlNi and Zr_2Ni +ZrNi. When Zr/Ni and Al/Ni multilayers are heated at a rate of 20-40 °C min⁻¹, metastable amorphous ZrNi and Al_9Ni_2 and Al_3Ni form, respectively, prior to any final phase formation because of kinetic and thermodynamic barriers [6,7]. In a self-propagating reaction,

however, the reaction temperatures (1000 °C and 1600 °C in Zr/Ni and Al/Ni foils, respectively) significantly reduce these barriers, allowing for diffusion and nucleation of final phases in $< 50 \ \mu s$.

Kinetic limitations are still realized in the delayed development of the Zr_2Ni phase, which is possibly the result of the high ratio of layer thicknesses (3:1 Zr:Ni) and limited Zr diffusion observed in Zr/Ni couples [8]. With a 50 nm bilayer period (thickness of a Zr and Ni layer), complete mixing of the layers and growth of the Zr₂Ni phase appears restricted in the initial 100 μ s.

Acknowledgments

We gratefully acknowledge financial support from the National Science Foundation grant DMI-0300396 and Department of Energy grant FG02-97ER62443. The views expressed are those of the authors, and not necessarily those of the supporting agencies.

References

[1] J.A. Floro, J. Vac. Sci. Technol. 4, 631 (1986).

[2] C.E. Wichersham, J.E. Poole, J. Vac. Sci. Technol. 6, 1699 (1988).

[3] L.A. Clevenger, C.V. Thompson, K.N. Tu, J. Appl. Phys. 67, 2894 (1990).

[4] T.P. Weihs, Self-Propagating Reactions in Multilayer Materials, Chapter F7, IOP Publishing Ltd (1997).

[5] A.J. Gavens, D. VanHeerden, A.B. Mann, M.E. Reiss, T.P. Weihs, J. Appl. Phys. **87**, 1255 (2000).

[6] B.M. Clemens, W.L. Johnson, R.B. Schwarz, J. Non-Cryst. Solids 61&62, 817 (1984).

[7] K.J. Blobaum, D. VanHeerden, A.J. Gavens, T.P. Weihs, Acta Mater. **51**, 3871 (2003).

[8] Y.-T. Cheng, W.L. Johnson, M.-A. Nicolet, Appl. Phys. Lett. 47, 800 (1985).

FIGURE 1: Plot of measured d-spacing vs. time. The first two data points are before the reaction front has entered the x-ray beam. The Zr to ZrNi transformation happens within 100 μ s while Zr₂Ni forms 120 ms later.