Structural Investigation of Epitaxial HfO₂ Films by X-ray Scattering

C.-H. Hsu¹, Z. K.Yang², P. Chang², M. Hong², J. Kwo³, Chih-Mao Huang¹, and Hsin-Yi Lee¹

¹Research Division, National Synchrotron Radiation Research Center, Hsinchu, Taiwan, R.O.C.; ²Department of Materials Science and Engineering, National Tsing-Hua Univerity, Hsinchu, Taiwan, R.O.C.; ³Department of Physics, National Tsing-Hua Univerity, Hsinchu, Taiwan, R.O.C.

Introduction

High-k material HfO_2 is a potential candidate for replacing SiO_2 as a gate dielectric in metal oxide-semiconductor (MOS) devices. Amorphous HfO_2 has been profoundly studied but may not be adequate due to the low re-crystallization temperatures.[1] A high electrical leakage occurs at grain boundaries, which are formed when amorphous films turn into polycrystalline. Epitaxial single-crystal oxide thin films and their interfaces with semiconductors are generally more robust during the high temperatures annealing. Therefore, the growth of high quality epitaxial HfO_2 films is pursuited and may provide advantages as the gate dielectric.[2]

Methods and Materials

Nano-thick HfO_2 epitaxial thin films have been grown on GaAs (001) substrates by molecular beam epitaxy with a two-step method. The initial deposition of HfO_2 was performed at room temperature and an amorphous layer was formed. In-situ annealing to ~530°C lead to the formation of an epitaxial single crystal HfO_2 layer, which serves as a template for the subsequent epitaxial over-growth of HfO_2 at higher temperatures. Synchrotron X-ray scattering and reflectivity were employed to characterize the structural properties of these films.

Results and Discussion

The intensity profile of a θ -2 θ scan along surface normal of a sample with a ~ 9 nm thick HfO_2 layer is illustrated in Fig. 1. The abscissa is in units of GaAs reciprocal lattice units (r.l.u._GaAs). The X-ray reflectivity curve, the part of $L \leq 1$ r.l.u._GaAs, can be well fitted by a single-layer model consisting of a 9.1 nm thick HfO₂ layer without interfacial layer. The periodic oscillations persist up to 8 nm⁻¹ indicating the presence of an atomically sharp interface, which is further confirmed by cross sectional transimission elelctron microscope images. In addition to the sharp (0 0 2) Bragg reflections of GaAs substrate, the broad peaks on the high L side is indexed as the (0 0 2) reflection of monoclinic phase HfO₂ (m-HfO₂). On the low L size, another broad peak, whose intensity is more than two orders of magnitude weaker than that of HfO₂ (002) is attributed to the $(-1 \ 1 \ 1)$ reflection of m-HfO₂. The intensity ratio of $(0 \ 0 \ 2)$ to (-1 1 1) reflections increases with deccreasing film thickness indicating that the film is predominantly consistant of $(0 \ 0 \ 1)$ oriented m-HfO₂ together with a (-1 1 1) oriented minority, especially in the case of ultra-thin films.

Careful analysis of the epitaxial relatioship between the $(0\ 0\ 1)$ oriented HfO₂ layer and substrate was carried out using fourcircle x-ray diffraction. A broad peak centered at ~2.2 r.l.u._GaAs was observed at the radial scan across GaAs (0 2 0) surface reflection, which confirms the alignment of in-plane axes. If the m-HfO₂ films were perfect single crystals, the ϕ scans across the HfO₂ (0 4 0) and (4 0 0) reflections would have a characteristic two-fold and one-fold symmetry, respectively. The observed four-fold rotational symmetry in both ϕ scans shown in Fig. 2a strongly suggest that the (0 0 1)-oriented HfO₂ films consist of four subdomains which rotate 90° with respect to each other. Fig. 2b shows an H-L mesh scan near the HfO₂ (4 0 0) reflection with the axes displayed in the r.l.u. of m-HfO₂. The lobe on the top is the (4 0 0) reflection of one domain and the lobe on the bottom, centered at (4 0 -0.572)_{HfO2}, matches perfectly the location of the (0 4 0) reflection of another m-HfO₂ frame whose in-plane rectangular lattice net is rotated 90° from the former one.

In summary, high quality m-HfO₂ epitaxial films have been grown on GaAs (0 0 1). The films are predominantly (0 0 1) oriented with the coexistence of four domains of 90° in-plane rotation with respect to each other.

References

- C. Wiemer, S. Ferrari , M. Fanciulli , G. Pavia , L. Lutterotti, Thin Solid Films 450, 134 (2004).
- [2] M. M. Frank, Glen D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul and D. A. Muller, Appl. Phys. Lett. 86, 152904 (2005).

Fig. 1. θ -2 θ scan along surface normal.

Fig. 2. a) ϕ scans across m-HfO₂ {400} and {040} reflections. b) a K-L mesh scan near m-HfO₂ (400) surface reflection.