X-ray absorption spectroscopy study of copper-doped zinc oxide: a high *T*c diluted magnetic semiconductor

Q. Ma¹, L.-H. Ye², D.B. Buchholz³, J.-H. Song³, A.J. Freeman², J.B. Ketterson², R.P.H. Chang³

¹Northwestern Synchrotron Radiation Center at Advanced Photon Source, Argonne, IL 60439; ²Department of Physics and Astronomy, and Materials Research Center, Northwestern University, Evanston IL 60208 ³Materials Science and Engineering Department, Northwestern University, Evanston IL 60208

Introduction

Although neither copper (nor its oxides) or zinc (and its oxides) are ferromagnetic, spin polarized density functional calculations predict that certain copper-doped zinc oxide (ZnO:Cu) structures should be ferromagnetic [1]. Further, since there are no known ferromagnetic copper compounds, ZnO:Cu appears to be an unambiguous DMS material. A series of ZnO:Cu films were grown by pulsed-laser deposition (PLD). When deposited under the appropriate growth conditions the ZnO:Cu films show evidence of ferromagnetism; the *M-H* curve shows hysteresis and coercivity. To gain an understanding as to why some films were examined by x-ray absorption spectroscopy.

Methods and Materials

Three PLD growth conditions were examined: N_2O ambient with an 8 cm target-to-substrate separation (8 cm t-s); O_2 ambient with an 8 cm t-s; and N_2O ambient with a 10 cm targetto-substrate separation (10 cm t-s). The details of the growth technique can be found in ref. [2]. X-ray absorption spectroscopy (XAS) was performed at the 5-BM-D bending magnet x-ray beam line at DND-CAT at the Advanced Photon Source. All the films in this study were determined by x-ray diffraction to grow with the ZnO *c*-axis normal to the plane of the substrate (i.e. the *ab*-plane parallel to the plane of the substrate). The films were examined both with the x-ray electric **E** vector parallel and perpendicular to the plane of the film.

Results

Only the films grown in an N₂O ambient with 8 cm t-s are ferromagnetic. Films grown with an 8 cm t-s in both the N₂O and O₂ ambient show evidence of copper substitution on zinc lattice sites (Cu_{Zn}) whereas films grown with a 10 cm t-s show evidence of copper-oxide clusters. Fig. 1 shows the Zn-edge data for all three growth conditions and a ZnO film reference spectrum. For the film grown with a 10 cm t-s, the spectrum is very similar to that of the ZnO reference whereas for films grown with an 8 cm t-s the ZnO features are altered significantly even at 1% Cu. The most probable explanation for this change is Cu_{Zn}. Fig. 2 shows the Cu-edge data for these samples compared to powder CuO and Cu₂O spectra. The spectra bear predominately the Cu²⁺ character. For the 10 cm t-s film, the bulk CuO features dominate the spectrum, indicating the existence of large CuO clusters; hence the reason why the Znedge data for the 10 cm t-s film, Fig. 1, is similar to that of ZnO. For both 8 cm t-s films, the Cu-edge spectra, Fig. 2, cannot be simply simulated by that of CuO. The *d*-state prepeaks are shifted downward by ~1 eV. Therefore, the band structures depart significantly from that of pure CuO. Also evident from Fig. 2 is that the films grown in an N₂O ambient show evidence of the Cu¹⁺ state, which is seldom detected in the film grown in **O**₂.

Discussion

The XAS study revealed that the ferromagnetism is observed only when the following conditions are met: 1) no clustering of copper and/or copper oxides occur, and 2) the sample contains a significant amount of Cu^{1+} .

Acknowledgments

Work at Northwestern is supported by the NSF (via its MRSEC program under Grant DMR-0076097), DARPA via Grant #N00014-02-1-0887 and NASA via Award No. 521-0077-05-A14/NCC2-1363. DND-CAT is supported by the E.I. DuPont de Nemours & Co., The Dow Chemical Co., the NSF via Grant DMR-9304725 and the State of Illinois via Grant IBHE HECA NWU 96. The APS is supported by the DOE via Contract No. W-31-109-Eng-38.

L.-H. Ye, A.J.Freeman, Phys. Rev. B 73, 033203 (2006).
D. B. Buchholz, R. P. H. Chang, J. H. Song, J. B. Ketterson, Appl. Phys. Lett. 87, 082504 (2005).