A 768-channel detector for photoelectron spectroscopy using synchrotron radiation


Institute of Mathematical and Physical Sciences, University of Wales, Aberystwyth, SY23 3BZ, UK

Introduction
Photoelectron spectroscopy is a technique that provides a wealth of parallel information and can be applied to a wide range of materials. For example, it is widely applied to semiconducting materials to monitor changes in surface composition, electronic structure, interface energetics, interface bonding and thin film growth [1]. By combining the intense light of a synchrotron radiation source with efficient detection of electrons, it is possible to apply the photoelectron spectroscopy technique with sufficient time resolution to study the dynamics of surface processes in-situ. A fully integrated detector has been developed at the University of Wales, Aberystwyth that enables rapid and efficient collection of photoelectrons [2]. Device performance in the first photoelectron spectroscopy measurements using soft x-ray excitation at the SRS, Daresbury laboratory is reviewed and the application of the combined detector/analyser system to real-time monitoring of surface processes is described.

The UWA multichannel detector
The UWA multichannel detector array comprises a custom ASIC mounted on a ceramic substrate in proximity to the rear face of an MCP. The ASIC contains 768 channels, or pixels, each measuring 3mm × 18µm on a pitch of 25µm. Each channel has a metal anode to collect the electrons as they emerge from the MCP; a charge sensitive amplifier to produce a digital signal in response to the electron pulse and an 16-bit counter associated with it to accumulate the counts as they arrive and circuitry to read out the data sequentially from all channels in the array. Each pixel on the ASIC has a trigger threshold of approximately 2 x 10^5 electrons from the MCP, adjustable by means of a sensitivity control. The MCPs fitted to the detector were a pair of custom sized Hamamatsu plates with 12µm pores, similar to the F2370 design, arranged in a chevron configuration.

The detector assembly was mounted at the focal plane of a VG CLAM4 hemispherical analyser, replacing the conventional channeltron detector enabling operation in scanning mode or fixed kinetic energy (snapshot) mode [2]. Initial testing offline at Aberystwyth and at SRS 4.1 showed a detector noise floor of 3.7 x 10^-4 counts s^-1 pixel^-1. The maximum count rate was determined to be in excess of 2 x 10^4 counts s^-1 pixel^-1 [3].

Real time study of thin film growth.
The detector/analyser combination was used at SRS MPW 6.1 to study the deposition of an organic semiconductor, tin phthalocyanine (SnPc), on a clean polycrystalline gold surface. A survey spectrum of the clean gold surface was taken using the detector in scanning mode or fixed kinetic energy (snapshot) mode [2]. Initial testing showed a detector noise floor of 3.7 x 10^4 counts s^-1 pixel^-1. The maximum count rate was determined to be in excess of 2 x 10^4 counts s^-1 pixel^-1 [3].

Acknowledgements
This work was funded through the EPSRC Real-time Electron Energy Spectroscopy (REES) programme (GR/R08575, GR/S74126). Access to the SRS was funded by the CCLRC. Support provided by National Assembly for Wales Centre for Advanced Functional Materials and Devices.

References

* Corresponding Author: dpl@aber.ac.uk