

Development of TEM High Power RF Vector Modulators

Y. Kang, J. Wilson M. McCarthy, S-H. Kim, M. Champion, SNS/ORNL R. Kustom, APS/ANL, B. Chase, FNAL

> CWHAP06 May 1-4, 2006 Argonne, IL

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

Cavity Tuning with External Reactance

- Cavity tuning is done externally through RF feed transmission line with at 1 or more adjustable reactances.
 - Using one reactance, the cavity can be matched and tuned at the terminal of the reactance
 - Cavity shunt resistance does not change with the detuning
 - The cavity to the reactance need to be $N^*\lambda/2$

Tuning, RF Voltage Control

- If the specified amplitude and phase of the voltage in the cavity is delivered, external cavity tuning is already achieved.
- Cavity voltage control is done externally through RF feed transmission line with reactive tuning elements.
- In fan-out RF distribution configuration, having the exact amplitude and phase distributions at cavities gap is important.
- There are advantages and disadvantages to each power splitting scheme, and the splitter itself is an important part of the overall system

Tuning, RF Control, and Matching

 The voltage vector control (and tuning) can be achieved using 2 or 3 reactive elements (or short stubs for realization)

2 stubs may provide sufficient range for the control.

- For a fixed input voltage resulted by fanning out the klystron output, each cavity port will have a reflected wave
- The mutual interaction of the reflections from many cavities must be eliminated
 - Circulator in each cavity port
 - Use an extra tuning element; no circulator or just one circulator at the klystron output for added protection

A Fan-Out Distribution with Stub Tuners

The terminal voltage at the accelerating cavity can be derived as a matrix equation, which must take into account all mutual coupling.

The terminal voltage:

$$V_L = Q \left(1 - S_{split} \Psi \right)^{-1} S_{split0} a_{1in}$$

$$Q_{mn} = \frac{S_{n21}(\Gamma_{Ln}+1)}{1 - S_{n22}\Gamma_{Ln}}\delta_{mn}$$

A Different Vector Modulator Idea

Quadrature hybrid + 2 halfwavelength tunable slabs

Tuning Stubs with Phase Shifters

- Advantages:
 - The power can be distributed over a larger volume of tunable material. This leads to easier cooling.
 - The need for the hybrid is eliminated.

0.25 λ spacing, 2 stubs from 0 to 0.5 λ . $Z_{stub}/Z_{line}=1$

This represents the theoretical MAXIMUM tuning range.

*Here, $\Gamma_{load} = 0$, so at the terminal $V_{terminal} / V_{input} = S_{21}$

0.25 λ stub spacing, 2 stubs from 0.15 to 0.35 λ . $Z_{stub}/Z_{line}=1$

Since a change in the electrical length of the stub of 0 to 0.5λ is not feasible, we limit our range to 0.15 to 0.35λ .

0.25 λ stub spacing, 2 stubs from 0.15 to 0.35 λ . $Z_{stub}/Z_{line}=0.2$

By changing the coupling to the stub (i.e. changing Z_{stub}/Z_{line}) we can dramatically improve the tuning range.

0.25 λ stub spacing, 2 stubs from 0.15 to 0.35 λ . $Z_{stub}/Z_{line}=0.2$

As could be expected, changing Gamma, load to 0.5+j0.5 will shift the tuning range slightly, as shown.

0.25 λ stub spacing, 3 stubs from 1 to 0.5 λ . $Z_{stub}/Z_{line}=0.2$

Using 3 stubs can provide FULL vector control. However, this is not typically required in accelerator applications.

Applying RF Voltage to a Cavity

- The cavity can have a specified voltage using two or more reactances in the feed transmission line
- The reactances are realized with short circuited transmission line sections
- Two tuning elements can deliver a limited range of voltage vector control
- Three tuning elements can deliver full range of voltage vector control

Determining Reactive Elements for Fan-Out Multicavity Operation

- Cavities are driven through transmission line stub networks
- For a specified set of voltage vectors, each stub network will have reflected power
- Each splitter output must be protected with an isolator (or a circulator), since the mutual interaction can cause disruptions in the voltage vector control
- Additional reactances at the splitter ports may tune out the reflection at the klystron amplifier output
- The reactances can be found setting up a system admittance matrix

Determining Reactive Elements for Fan-Out Multicavity Operation

- Reactive tuning is done at each splitter output port
- Additional reactances at the splitter ports may tune out the reflection at the klystron amplifier output
- The reactances can be found setting up a system admittance matrix

The Vector Modulation Using Hybrid Junction

• Transmissive

Prototype Vector Modulator

- Manufacturing parts completed and assembling is under way
- Center conductor is supported by two λ/4 stubs for cooling
- RF testing to be performed

JT-BATTEL

Square coax dimensional Sensitivity Hybrid Junction (50 Ω section)

• 50 Ω section center conductor width ranging from 0.49...0.51 inches

Square coax dimensional Sensitivity Hybrid Junction (50 Ω section)

• 35 Ω section center conductor width ranging from 0.85...0.89 inches

Square coax dimensional Sensitivity Hybrid Junction (50 Ω section)

• 35 Ω section center conductor width ranging from 0.85...0.89 inches

Ferroelectric materials

Ferroelectrics can be tuned with an external electric field

The relationship between the electric field and flux density can be approximated (in the lossless case) by

 $E = \alpha D + \beta D^3$

where a and b are functions of temperature. The definition of (ac) permittivity, then, is

 $\varepsilon' = \frac{dD}{dE}$

For small ac signals, this quantity can be approximated by a constant, and the system behaves linearly.

Shepard Roberts, "Dielectric and Piezoelectric Properties of barium titanate," Phys. Rev. 71, 890 (1947).

FIG. 4. Dielectric constant of (Ba-Sr)TiO₂ versus d.c. field strength.

*New ferroelectric materials have been developed recently with excellent microwave properties

A look at previous research

We would like to explore a structure that could also be used at lower frequencies.

Frequency: 11.424 GHz (X-Band)
>96% efficient at 250 MW
200 degree phase shift, 100kV bias

T-BATTE

•Uses 4 partially filled resonant cavities placed a quarter-wavelength apart.

•Cavities are partially loaded with BST ceramic.

Ferroelectric Phase Shifter Structure

DC block

DC bias feed

BST

* A small 6 degree phase shift has been measured with a 2 kV biasing potential.
* An alumina matching section is being developed to improve performance by lowering insertion loss.

SNS RF Test Facility (RFTF)

- The prototype VM will be tested in the SNS RFTF
- RFTF has been used for various cavity power coupler RF conditioning
 - SNS SRF couplers were conditioned using a 550 kW, 805 MHz klystron
 - Presently a 5 MW klystron is being used for BNL SRF photoinjector couplers
- The two klystrons have been installed completely April, 2006
 - 402.5 MHz, 2.5 MW peak, 1.3 msec, 8% DC
 - 805 MHz, 5 MW peak, 1.3 msec, 8% DC
- HV Converter Modulator
 - 10 MW capacity that can drive the SNS klystrons

RFTF

- The existing building is being reconfigured
- Test cave is being equipped

SRF facility

- An additional SRF building is under construction completion by Sep. 2007
- Vertical and horizontal testing of SRF structures and more

RFTF

 Two klystrons installed and tested (402 MHz and 805 MHz)

 Coaxial couplers under RF processing (805 MHz)

Summary

RF vector modulation and tuning methods

- For fan-out RF power distribution
- Elimination of circulators

Development of phase shifters

- Ferrite phase shifter
- Ferroelectric phase shifter

Prototype vector modulator being built

- Hybrid coupled design
- High power RF testing to be performed
- Will demonstrate the ferrite phase shifter performance

