

Feasibility of short pulses at ESRF

J. Jacob, L. Farvacque, E. Plouviez, V. Serrière

4th CW & High Average Power RF Workshop, APS'2006 Feasibility of short pulses at the ESRF

J. Jacob et al., Slide 1

0. Motivation

- Scientific case: ESRF- ID9 beamline:
 - Main single or few bunch user
 - Top specialist in time resolved experiments (Dynamical study of Laser triggered reactions in biological molecular structures)
 - Dream: Improve time resolution down to a ps at still reasonable flux, first step towards what could become this science with X-FEL
 - $\blacktriangleright \quad \text{Experiments use a chopper at 1 to 3 kHz} \Rightarrow \text{defines optimum repetition rate of short pulses}$
 - Refocusing by means of assymmetrically cut crystal is considered by the beam line to maximize flux
- Most other ESRF users prefer high intensity high brilliance beam
 - Differential Head-Tail vertical kick should be limited to ID9
 - Produce as low distortion as possible, avoid blow up

1. Principle: vertical differential kick

4th CW & High Average Power RF Workshop, APS'2006 Feasibility of short pulses at the ESRF

J. Jacob et al., Slide 3

Ŕ∕ŀ

2. Required kicks at ESRF

4th CW & High Average Power RF Workshop, APS'2006

Feasibility of short pulses at the ESRF

J. Jacob et al. . Slide 4

B3

1.78

-1.67

3.26

16.02

1.86

3. Minimum transverse RF kicks

Assuming no further distortion, full separation of $\Delta \tau = 1$ ps slices can be obtained with crab cavities delivering:

	B1: angular separation	B2: angular separation	B3: separation in position
(f x V $_{\perp}$) ₁ [MV x GHz]	14.17	14.17	1.70
(f x V $_{\perp}$) $_{2}$ [MV x GHz]	-16.58	-14.38	-1.59
(f x V $_{\perp}$) $_{3}$ [MV x GHz]	1.73	1.49	3.11

(*f* x V_{\perp}) is simply obtained from kick *k* as: $f \cdot \hat{V}_{\perp} = \frac{k}{\Delta \tau} \frac{E/e}{2\pi}$

- Angular separation:
 - less demanding on X-ray optics
 - requires high RF deflection: 15 to 17 MV x GHz
- Separation in position:
 - not clear if possible with resolution of existing x-ray optics
 - requires reasonable RF deflection: 3.1 MV x GHz

4. Definition of transverse impedance

- Deflecting cavity:
 - > 1^{st} transverse HOM \rightarrow E110 deflecting mode

$$\frac{R_{\perp}^{defl}}{\left[\Omega\right]} = \frac{\hat{V}_{\perp}^{2}}{P} = \frac{\left|\int_{0}^{L} (E_{r} - Z_{0}H_{\varphi}) \cdot e^{j\frac{\omega}{c}s} ds\right|^{2}}{P} = \frac{2}{(\omega/c)} \frac{R_{\perp}^{usual}}{\left[\Omega/m\right]}$$

- E010 mode becomes a LOM (Lower Order Mode)
- LOM & HOMs must be damped
- TCBI & LCBI, also from E110 Crab mode need to be investigated

'R\

Some scaling

- Deflecting Cavity: $V_{\perp} \bullet f \ge 3 MV GHz$
 - > Impedance: $(R_{\perp}^{usual} / Q) \propto f$

$$(R_{\perp}^{defl} / Q) \propto 1 \Longrightarrow (R_{\perp}^{defl} / Q \times f) \propto f$$

> Q factor for → NC:
$$Q \propto 1/\sqrt{f}$$

 \rightarrow SC: Q = Qext = f (beam loading)

▶ SC Cavity: electron field emission \rightarrow limits E_{peak}

$$V_{\perp} \sim E_{peak} \bullet L \sim E_{peak} / f \implies [V_{\perp} \bullet f]^{max} \sim E_{peak}$$

Given $[V_{\perp} \bullet f]^{max}$, $L \sim 1/f$: higher $f \rightarrow$ shorter structure

4th CW & High Average Power RF Workshop, APS'2006

• Example CESRB / KEKB SC Crab cavities

4th CW & High Average Power RF Workshop, APS'2006 Feasibility of short pulses at the ESRF

NC cavity – pulsed mode

- 3 GHz S band cavities: 2π/3 backward traveling wave structure
 - > SLAC, L = 2.44 m, P = 20 MW \rightarrow V_⊥ = 17.5 MV

(corresponds to $R_{\perp}/Q / L_{cell} = 1000 \Omega/m$)

- > Or CTF3 deflecting cavity: $R_{\perp}/Q / L_{cell} = 1380 \Omega/m$
- Tentative ESRF dimensioning:
 - > 20 cells ⇔ Length = 0.66 cm
 - Fits into machine
 - Wave attenuation has only small impact on achieved deflection
- the second secon
 - ⇒ Possible to add a lot of damping against LOM and HOMs
- Very preliminary study and results !

NC cavity: deflecting mode / LOM

		f [GHz]	Q for Copper	Q for stainless steel
TM010	LOM	2.1516	22000	1700
TM110	Deflecting mode	2.998	11500	1600

NC cavity: additional HOM / LOM damping

4th CW & High Average Power RF Workshop, APS'2006 Feasibility of short pulses at the ESRF

Selective damping of LOM

Ferrite height = 20 mm

4th CW & High Average Power RF Workshop, APS'2006 Feasibility of short pulses at the ESRF

R

HOM & LOM damping

4th CW & High Average Power RF Workshop, APS'2006 R\F

Expected deflection performance

Deflecting mode with ferrite (h = 20mm, w = 15 mm):

- $R/Q/L = 1000 \Omega/m$ (pessimistic)
- Q = 1400
- L = 0.66 m
- T_{fill} = 0.09 μs
 (T_{rev} = 2.84 μs)

4th CW & High Average Power RF Workshop, APS'2006 Feasibility of short pulses at the ESRF

J. Jacob et al., Slide 15

Preliminary conclusions

- Minimum requirement for ps separaion in position: 3 MV GHz
- Easier ps angle separation needs: 17 MV GHz
- SC cavity: already 3 MV GHz:
 - Much space: 3 x 1...2 m
 - Huge R&D effort
- NC pulsed TW S-band structure
 - HOM damping seems feasible with bad conductivity stainles steel and additional ferrite absorbers
 - Even for only 20 cells with a total length of 0.66 m:
 - ♦ 3 MV GHz requires only 1.6 MW pulse
 - ♦ 14 MV GHz achievable with less than 40 MW pulses
 - \diamond RF pulse length of several filling times: still well below T_{rev}
 - > Question: modulators for 0.5 μ s pulses at 1 to 3 kHz rep. rate??

