

Bunch-by-Bunch Feedback and NC HOM Damped Cavities for a Current Increase at the ESRF

<u>J. Jacob</u>, E. Plouviez, G. Naylor, J.-M. Koch, V. Serrière, N. Guillotin

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

ESRF machine commissioned in 1992

- 1992 100 mA initial design current reached after a few months
- 1994start of user's service operation, while steadily
increasing the current
- 1995 200 mA delivered to the users
- 1997 commissioning of a 3rd RF transmitter feeding a third pair of 5-cell copper cavities:
 - \rightarrow reduced power per RF coupler and per klystron
 - → sufficient redundancy for reliable standard operation at 200 mA

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

On the way towards 200 mA

- Transverse instabilities:
 - Resistive wall instability
 - Ion trapping
 - \rightarrow mastered by increasing the chromaticity
- Longitudinal Instabilities:
 - Longitudinal Coupled Bunch Instabilities (LCBI) driven by cavity Higher Order Modes (HOM) for $I_{beam} > 50 \text{ mA}$
 - → stabilized by Landau damping from transient beam loading in partial filling (200 mA in non symmetric 1/3, later 2/3 filling)
 - → 1998: new cavity temperature regulation to ± 0.05°C, for precise control of HOM frequencies:
 - \Rightarrow stable at 200 mA in uniform and symmetric 2 x 1/3 filling

250 mA stored several times in machine physics shifts since 2002

- No limitation from RF power or radiation load
- However, no cavity temperature settings found to escape HOM driven LCBI over full 0 to 250 mA range

Two complementary strategies:

- I. 300 mA in medium term / Bunch-by-bunch feedback
 - LFB: to combat LCBI
 - > TFB to relax on chromaticity and increase the dynamic aperture
 - LFB / TFB: Active damping of longitudinal and transverse multibunch instabilities by means of a broadband bunch-by-bunch feedback

II. 400 ... 500 mA in long term / HOM damped cavities

- Temperature detuning (like at Elettra or presently at ESRF) not sufficient
- R&D of strongly NC HOM damped cavities

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped J. J. Cavities for a Current Increase at the ESRF

 \geq

 \geq

 \geq

Radiation

RF system

Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

 \Rightarrow Longitudinal Feedback under commissioning

J. Jacob et al. . Slide 5

\rightarrow need to be cured

- In terms of Beam power, number of cavities, power per RF window: \geq
 - Before 1997: 2 transmitters / 4 cavities \rightarrow OK for 200 mA \Diamond
 - 3 transmitters / 6 cavities \rightarrow OK for 300 mA Since 1997: \Diamond
- HOM driven LCBI \succ

- Bremsstrahlung in ID straights Overall radiation shielding \rightarrow OK, has been reinforced
 - \rightarrow OK with NEG coated chambers
- Beam line front ends being upgraded $\rightarrow OK$ \geq
- \succ Beam lines \rightarrow vary Undulator Length and Gap

Crotch absorbers: \succ

Remaining storage ring absorbers

- Higher heat load
 - \rightarrow close to limit \Rightarrow careful current ramping necessary

 $\rightarrow OK$

- \rightarrow new crotch absorbers for 400...500 mA under development

- Here: principle and design of bunch-by-bunch feedback
 explained in detail for LFB
- LFB & TFB developed in parallel
- LFB & TFB makes use of identical Digital Signal Processor hardware

$$= \hat{\tau} e^{j\omega t} \implies \hat{\tau} e^{j\omega t} \left\{ \omega_{s0}^{2} + \frac{2j\omega}{\tau_{s}} - \omega^{2} \right\} = \frac{\alpha V(t)}{T_{0} E_{0}/e}$$

• HOM with

τ

 $\omega_{HOM} \approx p \omega_{RF} + n \omega_0 + \omega_{s0}$

$$\Rightarrow V(t) = \omega_{HOM} I_{beam} (jR_{HOM} - X_{HOM}) \hat{\tau} e^{j\omega t}$$

 \triangleright *R*_{*HOM*} produces anti-damping, which cancels natural damping for Coupled Bunch Mode of order *n* when:

$$I_{beam} = \frac{2\omega_s T_0 E_0 / e}{\tau_s \alpha \omega_{HOM} R_{HOM}}$$

- Feedback: must provide voltage to re-establish sufficient damping
 - > Pick up + detector: measure $\hat{\tau} e^{j\omega t}$ (easy) or $\hat{\varepsilon} e^{j\omega t}$ (difficult)

Calculate kick:

$$V(t) = -\left[\omega_{HOM} I_{beam} R_{HOM} \right]^{MAX} \xrightarrow{\alpha} \hat{\epsilon} e^{j\omega t}, \rightarrow differentiation!$$

$$V(t) = -\left[\omega_{HOM} I_{beam} R_{HOM} \right]^{MAX} \xrightarrow{\alpha} \hat{\epsilon} e^{j\omega t}, \rightarrow no \ differentiation!$$

Apply the kick via an adequate kicker

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped J. J. Cavities for a Current Increase at the ESRF

External

Perturbation

LFB Correction calculation principle

- Error signal: time deviation
- Correction signal: energy kick
- **Problem:** the energy kick correction deviation is the derivative of the time deviation; this derivation is a very inaccurate and noisy DSP operation

• Solution: each bunch phase oscillation is a quasi sinusoidal oscillation at f_{sync} , so a derivation can be replaced by a band pass filtering at f_{sync} and a $\pi/2$ phase shift =>FIR digital filter

LFB Gain ?

• The natural damping time at the ESRF is

 \succ $\tau_s = 3.6 \text{ ms}$

- The digital signal processing algorithm will allow an active damping time of down to about
 - > $\tau_{damp} = 0.5 \text{ ms} \approx \tau_s /7$ (limited by the loop delay)

for which the gain will have to be:

$$\frac{\hat{V}_{kick}}{\hat{\tau}} = \left[\omega_{HOM} I_{beam} R_{HOM}\right]^{MAX} = 7 \times \frac{2\omega_s T_0 E_0 / e}{\tau_s \alpha} = 4.7 \text{ V/fs}$$

• This figure can be compared with:

$$d\tau/dt \approx \alpha \varepsilon/E_0 \Rightarrow \hat{\varepsilon}/\hat{\tau} = 0.4 \ keV/fs$$

and

$$\Delta \varepsilon / \Delta \Phi_{352 \text{ MHz}} = 3.3 \text{ MeV/}^{\circ}$$

considering that the correction adds up over the active damping time (≈ 160 turns)

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

LFB - principle

- Bandwidth: $f_{RF}/2 = 176 MHz$
- Strength depends on quality of phase signal measurement:
 - \succ Resolution (S/N, ADC, ...)
 - Spurious signals: RF transmitter noise, Injection glitch, beam loading phase transients

Phase detection at 1.4 GHz

R

LFB Phase measurement - Principle

Phase detector sensitivity [≠ f(freq)]	$\approx 10 \text{ mV}/^{\circ}$						
Thermal noise ($R = 50\Omega$, $BW = 176$ MHz)	$V_{noise} = \sqrt{kTBR} \approx 6\mu V$						
Phase detector turn by turn resolution:	$\approx 5 \ 10^{-4}$ ° $\Rightarrow 4 \ fs_{@352 \ MHz}$						
Work at 4 frf = 1.4 GHz $\Rightarrow \tau$ resolution:	$\delta \tau \approx$ 1 fs / turn						
14 bit ADC, $LSB = \delta \phi$, usable range $\pm 8000 LSB$ $\Delta \tau_{detect-range}$							
\Rightarrow Suppression of spurious signal (RF noise, transients) below ±8 ps !							

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF LFB Spurious phase signals- mode 0 signals level

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

LFB Spurious phase signals: beam loading transients

- 2 x 1/3 filling
- Would put +/-15 V at the input of the ADC
- Must be reduced by 30dB (or 31) in the analog front end.

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF J. Jacob et al., Slide 13

R\F

LFB: BTS - Beam Transient Suppression

BTS using a dedicated auxiliary FPGA board

PRINCIPLE

- Take N sample per turn of the raw phase signal φ_n
- Compute the average $< \phi_n >$ of each sample ϕ_n over P turns with P X T_{rev} = T_{sync}
- Use these < ϕ_n > values to generate a signal at the revolution frequency and substract it from the raw phase signal

EFFECT

• Narrow bandwidth periodic notch filter removing all the harmonics of the revolution frequency without altering the HOM synchrotron sidebands

BTS OFF:

Phase FFT at f₀ due to partial filling reduced from 5 dBm to -28 dBm

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

LFB: Output dynamic range: kicker strength

• Remember:

$$\frac{\hat{V}_{kick}}{\hat{\tau}} = 4.7 \text{ V/fs} \quad \text{for } 0.5 \text{ ms damping time}$$

• So, without safety margin:

 ϕ detector sensitivity \rightarrow 1 fs/turn

$$\downarrow \\ \hat{V}_{kick}^{\min} = 4.7 \, V$$

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

LFB: Longitudinal Kicker

R F

• Design:

• Measurement at ESRF: \approx 500 V kick have been verified

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

LFB: QPSK modulator: bunch by bunch & $BW = f_{rf}/2$

QPSK built up in house using components of the ESRF fast timing system

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

Bunch by bunch feedback:

- parallel processing of all 992 bunches
- processes shifted by $T_{rf} = 2.84 \text{ ns}$
- Each process sequenced at $T_0 = 2.8 \ \mu s$

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

LFB / TFB: FPGA – digital signal processor

- Virtex-II from Xilinx
 - 100 Gops
 - Code development with System Generator (Xilinx / The MathWorks)

- Data transfer in and out:
- ➢ Four 14 bit ADC channels 4 x 88 MHz
- One 14 bit DAC (DDR) at 352 MS/s
- ➢ Fast DDR2 RAM 64 MB

Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF J. Jacob et al., Slide 24

R\F

LFB: FPGA Simulation: further Mode 0 and Phase transient suppression

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

Case of an unstable beam: grow/damp measurement by means of a gated feedback interruption

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF J. Jacob et al., Slide 26

R

LFB prototype: Measured Rise time /damping times

Case of a stable beam: grow/damp measurement using a gated excitation of the beam with a generator at a HOM frequency:

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF J. Jacob et al., Slide 27

R\F

Status of Multibunch Feedbacks

- Main LFB components within the specs:
 - RF front end , QPSK, Libera processor, cavity, amplifier...
- First tests with prototype LFB successful:
 - damping time of tests signals correct all over the span
 - real HOM instabilities damping observed and measured
 - 250mA stored in uniform mode

• But still a lot to do

- Device server and applications
- Auxiliary subsystems being implemented (tuning help, protection against 4X10mA induced signals...)
- > Build up the system for a reliable day-to-day operation

Transverse Feedback

- TFB will follow about 6 months behind
- Using the same FPGA and very similar software
- > All hardware, including kickers in house

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

II. Cavity R&D for 400 ... 500 mA at ESRF

- Heat load \Rightarrow issue for vacuum system, photon absorbers and beam lines
- Possibility of implementing canted undulators to obtain more beam lines per straight section
- RF power issue, e.g. for present ESRF parameters:

 \succ E₀ = 6 GeV

 \succ U₀ = 5 MeV/turn

- ⇒ beam loading: $P_{beam} = 2.5 \text{ MW at } 500 \text{ mA}$ ($P_{tot} \approx 2.6 \dots 3.3 \text{ MW}$) while $V_{acc} = 9 \text{ MV}$ is very modest
- 6 existing ESRF five-cell cavities / each having 2 RF windows are no longer adequate:

♦ RF window power and coupling \Rightarrow I_{beam} ≤ 300...350 mA

- Whereas available voltage: 15 MV (more than required)
- $\blacktriangleright \quad \mathsf{RF} \text{ Power issue} \Rightarrow \mathbf{new cavities required with at least 1 coupler/cell}$
- HOM driven LCBI or TCBI
 - ⇒ Feedback and HOM damped cavities !

NB: LFB \rightarrow reasonably \approx 5 x I_{threshold}

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

Strongly HOM damped SC Cavity - e.g. SOLEIL cavity -

- Successful test at ESRF in 2002
- 3 modules provide 9...15 MV
- Excellent HOM suppression (CBI thresholds of several Amp's)
- But
 - 6 cells & 6 couplers in total
 - Max 200...250 kW/coupler
 - \Rightarrow P_{beam} < 1500 kW
 - \Rightarrow I_{beam} < 300 mA
- 500 mA would require R&D on RF couplers:
 - Either 500 kW/coupler
 - Or 2 couplers per cell

Reliability of Cryogenic System for a light source?

Superconducting SOLEIL cavity at ESRF

Not the preferred solution for ESRF current upgrade

Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF J. Jacob et al., Slide 30

4th CW & High Average Power RF Workshop, APS'2006

Single cell NC cavities

- 500 mA at ESRF: 18 single cell cavities
 - 6 cavities x 3 RF sections (presently 2 five-cell cavities / RF section)
 - Conservative in terms of power handling
 - ◊ ≈ 160 kW/coupler
 - ♦ 0.5 MV/cavity
 - still some redundancy for high reliability
- HOM ?
 - Temperature detuning of HOM as done systematically with Ellettra cavities (Elettra, ANKA, SLS,...) and at ESRF on 5-cell cavities
 - or
 - Strong HOM damping as at PEP, BESSY, soon ALBA, ...

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

Assumption:

12 identical Elettra cavities scaled to ESRF frequencies

RF

- Curves represent the worst impedance at the considered frequency
- Stability \Leftrightarrow impedance near $kf_0 = k \times 355 \text{ kHz}$, i.e. near 0 and 355 kHz on the graph lower than threshold
- Here a narrow stable working point is found

Cavity Numb.	1	2	3	4	5	6	7	8	9	10	11	12
Temp / ⁰C	60	60	60	60	60	60	60	60	60	60	60	60

J. Jacob et al., Slide 32

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

Simulation: T^o detuning of HOM – 12 different cavities

Assumption:

12

41.5

12 scaled Elettra cavities with a spread in their HOM frequencies corresponding to measured manufacturing tolerances

RF

Here again a stable working point is found

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

Simulation: T^o detuning of HOM – 18 identical cavities

Assumption:

- 18 scaled identical Elettra cavities
 - No stable working point was found, covering the injection from 0 to 500 mA

R\F

- The working point found here is only stable at 500 mA, but not below
- NOT acceptable for stable operation at ESRF
- Transverse HOM have even not yet been considered !

Cavity Numb.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Temp / ⁰C	71	71	71	71	71	71	71	71	71	71	71	71	71	71	71	71	71	71

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

R&D: HOM damped NC single cell cavity

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

	ESRF design – 1 st iteration (based on "EU" cavity model)	Existing ESRF 5-Cell Cavity
	GdfidL simulation for the naked cavity	URMEL simulation for a single cell
fo (MHz)	352.200	352.200
Qo	47 500	47 300
Rs (kΩ)	7100	6 700
Rs/Q (Ω)	150	142

Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

HOM damper with ferrite absorbers

4th CW & High Average Power RF Workshop, APS'2006 Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF J. Jacob et al., Slide 38

R\I

Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF J. Jacob et al., Slide 39

R\F

Bunch-by-Bunch Feedback & NC HOM Damped Cavities for a Current Increase at the ESRF

CONCLUSION

- 1. 300 mA soon
 - LFB system Prototype successfully tested
 - Machine physics runs: stable 300 mA at the ESRF expected in the coming months
 - In User Service Mode: Ramp the current slowly / regular checks of crotch absorbers
- 2. 400 ... 500 mA in longer term, still needs a lot of R&D:
 - Single cell strongly HOM damped NC cavities under development
 - New crotch absorber design required
 - Many Other power / vacuum issues

4th CW & High Average Power RF Workshop, APS'2006