

Status of the ESRF Radio Frequency System

J. Jacob, J.-M. Mercier, P. Barbier

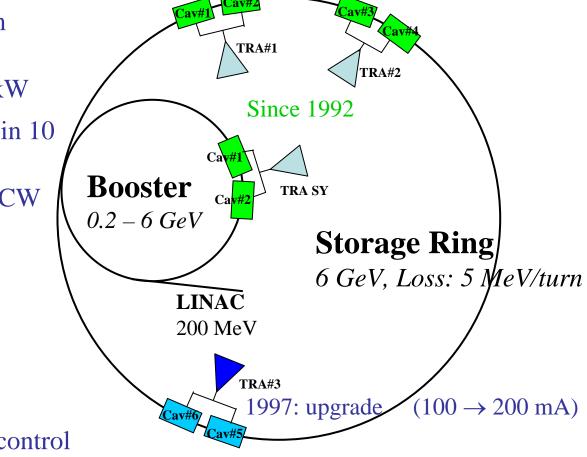
- 1. ESRF 352 MHz RF system
- 2. RF operation statistics
- 3. Experience with 1.3 MW klystrons
- 4. Waveguide switches
- 5. Arc detectors
- 6. New HV deck
- 7. Cavities

Status of the ESRF Radio Frequency System

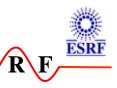
J. Jacob et al., Slide 1

4th CW & High Average Power RF Workshop, APS'2006

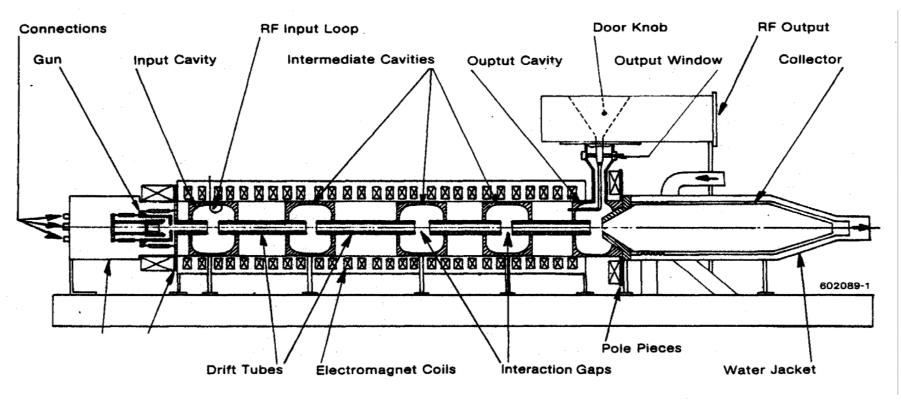
1. RF system based on 352.2 MHz CERN-LEP design


CAVITIES:

- 5 cell LEP type copper cavities
- 2 couplers / cavity => beam loading
- Max Window power: 170 kW
- Booster: max 4 MV/cavity in 10 Hz pulsed mode
- SR: max 2.5 MV/cavity in CW

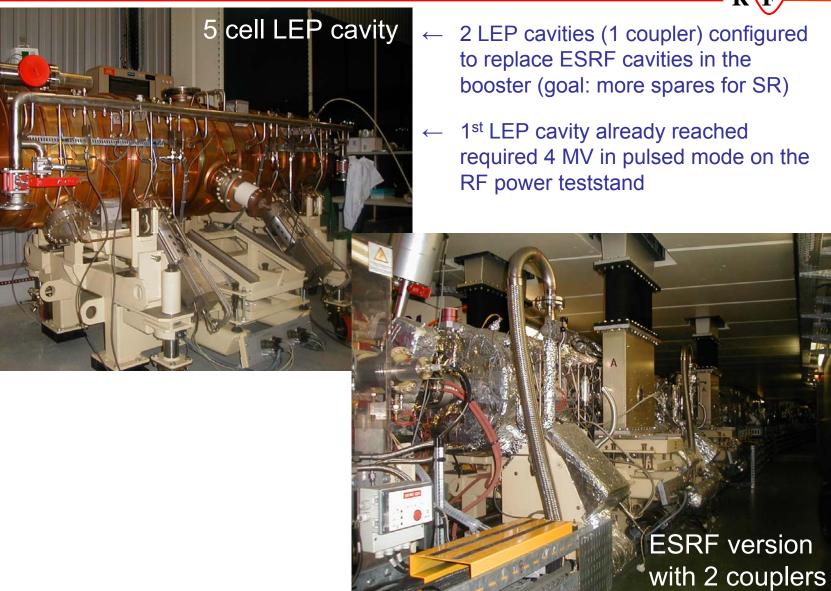

TRANSMITTERS:

- 1.3 MW klystrons
- feeding 2 or 4 cavities
- HVPS: 100 kV DC, 20 A
- Anode Modulator => gain control



R\

1.1 & 1.3 MW – 352.2 MHz – CW Klystrons from THALES, PHILIPS, EEV

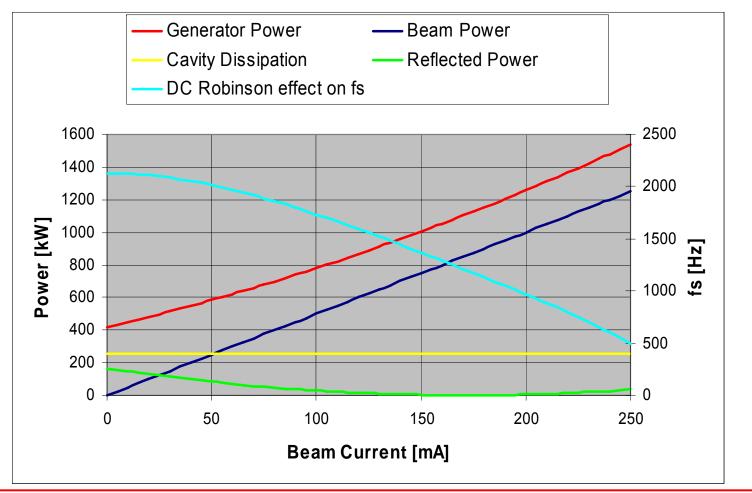


Example: THALES klystron

4th CW & High Average Power RF Workshop, APS'2006 Status of the ESRF Radio Frequency System J. J.

1.2 Cavities

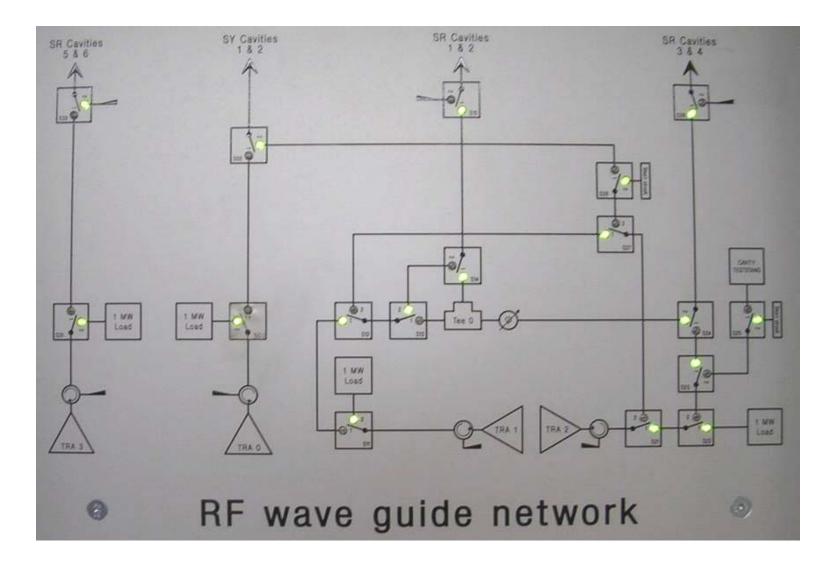



- \leftarrow 2 LEP cavities (1 coupler) configured to replace ESRF cavities in the booster (goal: more spares for SR)
 - 1st LEP cavity already reached required 4 MV in pulsed mode on the

4th CW & High Average Power RF Workshop, APS'2006

Status of the ESRF Radio Frequency System

Typical SR working point in multibunch operation with 6 cavities providing $V_{acc} = 9 MV$



4th CW & High Average Power RF Workshop, APS'2006

J. Jacob et al., Slide 5

1.4 Redundancy of RF system: flexible configuration

4th CW & High Average Power RF Workshop, APS'2006 Status of the ESRF Radio Frequency System

Nominal 200 mA multibunch operation with

- SRRF1 transmitter at 900 kW on Cavities 1, 2, 3 & 4
- SRRF3 transmitter at 450 kW on Cavities 5 & 6
- SYRF transmitter at 600 kW on Booster Cavities 1 & 2

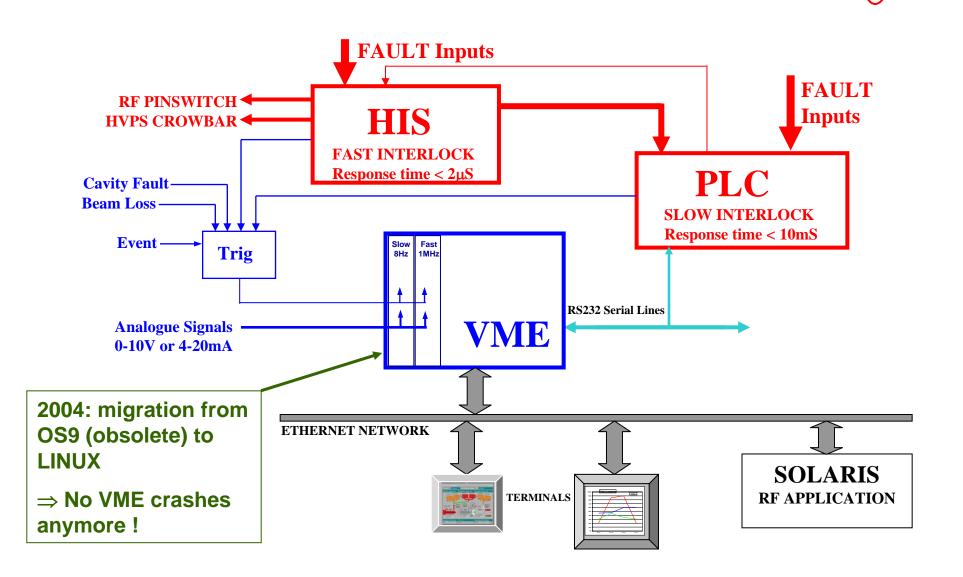
 - Back up of SYRF Back up of SRRF1

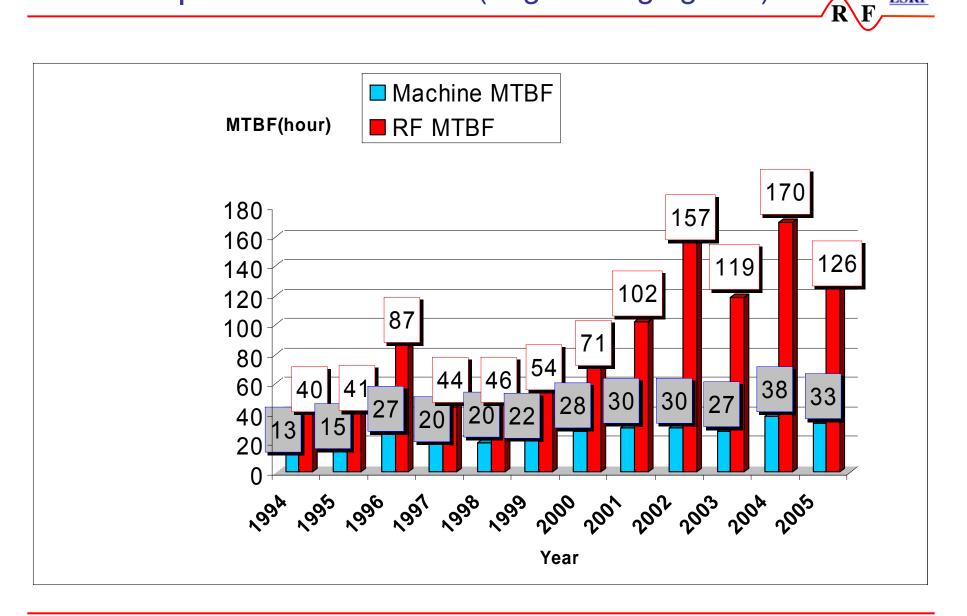
SRRF2 operational for

- Fall back with SRRF1&2 on 4 cavities without SRRF3
- *Klystron tests on 1.3 MW dummy loadHigh power cavity teststand*

NB: Single bunch (10 mA) 4 bunch (40 mA) and 16 bunch (90 mA) operation: 8 MV with SRRF1 on Cavities 1, 2, 3 & 4, Cavities 5 & 6 not powered

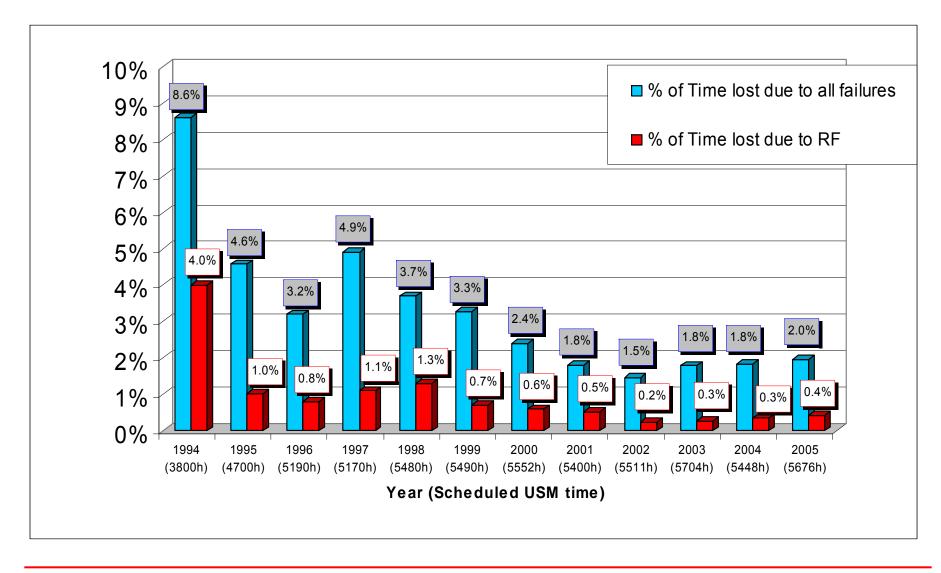
4th CW & High Average Power RF Workshop, APS'2006


1.6 RF loops


- TIMING system with master source in control room: distributes the RF to all transmitters. Frequency controlled by software orbit control to compensate DC orbit drifts.
- Fast Hardware AC Phase loop on klystron drive chain → to suppress phase noise induced by HV ripples
- Slow software loops to control:
 - → Cavity tuning angle (Voltage / Incident wave phase), acts on cavity tuners (plungers), compensates thermal drifts and detuning from reactive beam power
 - → *DC phase control* of each transmitter in order to keep all cavity voltages in phase
 - → SR: Cavity Voltage control via the klystron anode modulator (gain control, with constant input drive power)
- SY: fast DSP amplitude control of the drive power for 10 Hz booster pulse (at constant klystron current = constant gain)

4th CW & High Average Power RF Workshop, APS'2006

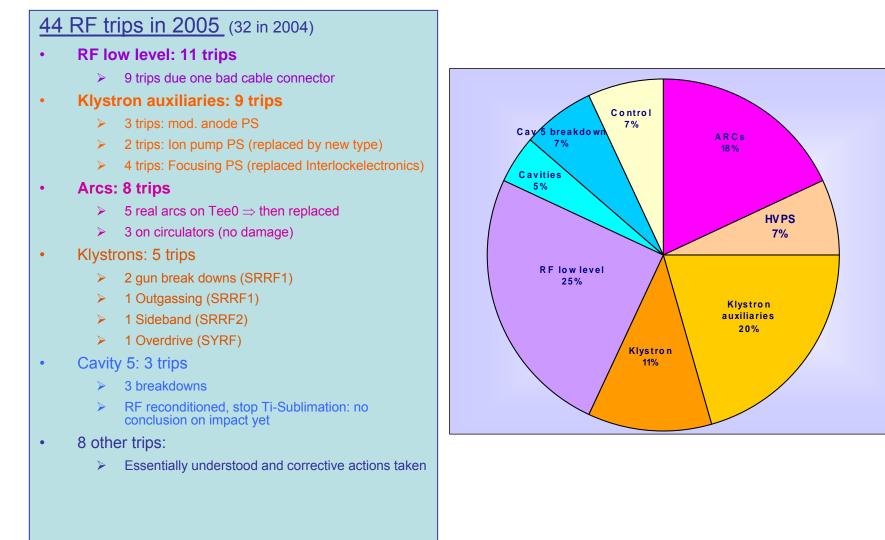
1.7 RF control system and Data logging



4th CW & High Average Power RF Workshop, APS'2006 Status of the ESRF Radio Frequency System J.

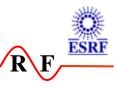
4th CW & High Average Power RF Workshop, APS'2006 Status of the ESRF Radio Frequency System

Availability



4th CW & High Average Power RF Workshop, APS'2006

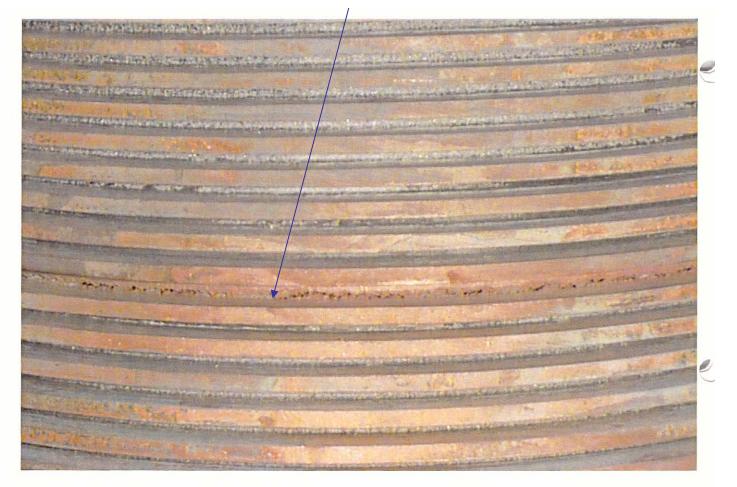
Example 2005



4th CW & High Average Power RF Workshop, APS'2006

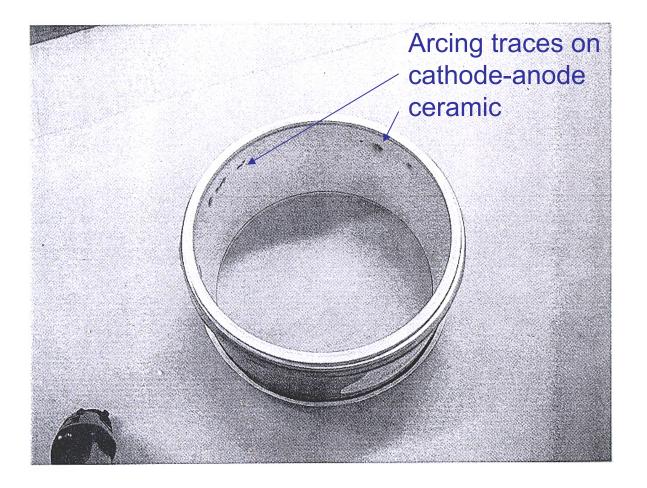
- Only small contribution to RF trips:
 - HVPS + Klystrons = 18 %
- No Klystron damage for more than 7 years:
 - Iast failure: December 1998 !

Klystron failures / early faults at ESRF



Date	Klystron	HV time [h]	place	Fab / <mark>Op</mark>	Failure description
Sep 92	TH89016-1	1216	SYRF	Fab	Filament contact broken: shipment?
Feb 95	EEV1	0	SAT	Fab	Anode/body discharge, youth $pb \rightarrow solved$
Mar 96	TH89022-1	8200	SYRF	Fab	Vacuum leak / Cavity 1 brazing \rightarrow repaired
Apr 97	EEV2	0	ship	Fab	Vacuum leak / brazing on coaxial output \rightarrow repaired
Apr 97	TH89016-2	7000	SRRF3	Ор	Barium evap \rightarrow I _{anode} \rightarrow spotknocking \rightarrow window break
Jan 98	TH89012-1	8395	SYRF	?	Collector partly molten (Ca deposit \rightarrow ?) \rightarrow no repair
Jul 98	TH89016-3	0	FAT	Fab	Collector failure \rightarrow no further repair
Nov 98	EEV2-1	1898	SRRF1	Fab	Cavity 2 feedthrough burnt (loose connect) \rightarrow repaired
	TH89018-1	2668	SRRF1	Ор	Ba evap \rightarrow I _{anode} \rightarrow spotknocking & window sand blast
Dec 98	TH89018-1	11306	SYRF	Fab	Collector microleak (although clean) \rightarrow major repair
Nov 99	EEV5	0	FAT	Fab	Anode/body discharge \rightarrow repaired
CERN	TH89015-1	8800	LEP?	Op?	Gun breakdown \rightarrow repaired, then loan to ESRF
CERN	EEV-1	2800	LEP?	Op?	Gun Breakdown \rightarrow repaired, then loan to ESRF
CERN	Philips-1	9020	LEP?	Op?	Gun Breakdown \rightarrow repaired, then loan to ESRF

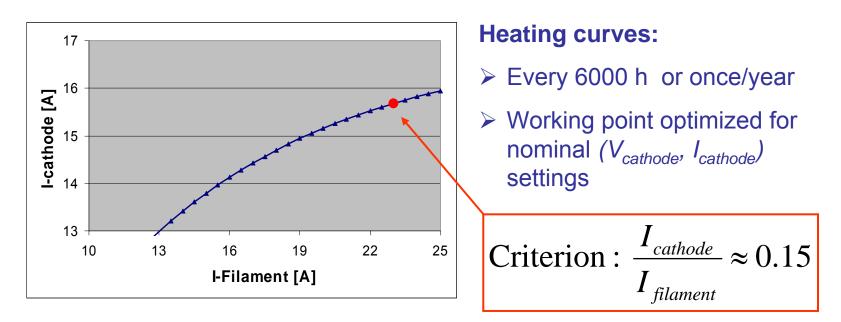
4th CW & High Average Power RF Workshop, APS'2006



TH 89012 collector opening risk

4th CW & High Average Power RF Workshop, APS'2006

4th CW & High Average Power RF Workshop, APS'2006 Status of the ESRF Radio Frequency System


11 operational Klystrons in house for 4 sockets

	HV time [h]	Today's allocation
EEV Emily 2 (CERN)	16626	SRRF1: 6500 h/year
TH89015-2 Pauline (CERN)	1228	SRRF2: 100 – 800 h/year
Philips Marika 2 (CERN)	10796	SRRF3: 5000 h/year
TH89022-2	17521	SYRF (booster): 1800 h/year
TH89018-2	12203	stored
EEV1	23727	stored
EEV2-2	8429	stored
EEV3	8374	stored
EEV4	9218	stored
EEV5	10631	stored
Philips	6146	stored

Out of 14 listed failures:

- 9 failures = material or fabrication problems:
 - Likely to appear early
 - Youth problems: now better understood by manufacturers ?
 - Manufacturing errors: improved quality management ?
 - 2 collector problems on booster: enhanced by
 - high collector power?
 - bad cooling in one case?
- 0 failure linked to high CW RF power level
 - > No difference: SRRF1 / 900 kW \leftrightarrow SRRF3 / 450 kW
- 5 failures = Gun problems
 - To a certain extend: due to operation conditions.i.e. filament heating
 - > 3 gun breakdowns experienced at CERN: conditions ?
 - > 2 cases of barium evaporation experienced at ESRF \rightarrow definitely linked with filament heating

1. Carefull adjustment and regular check of filament working point:

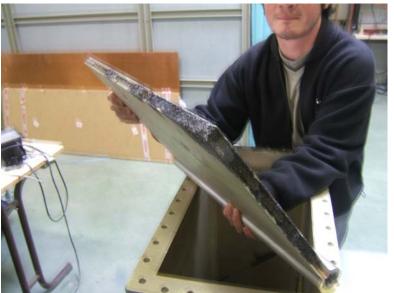
 $\blacktriangleright I_{filament} \text{ too low} \Rightarrow \text{field emission} \Rightarrow \text{bad for cathode lifetime}$

- $\blacktriangleright I_{filament} \text{ too high} \Rightarrow \text{Barium evaporation} \Rightarrow I_{anode}, \text{ Breakdowns}$
- 2. Low heating: $I_{filament}$ reduced by 30 % \Im systematically for HV OFF
- 3. Monitor Anode current (< 1 to1.5 mA)

4th CW & High Average Power RF Workshop, APS'2006 R\F

Booster operation

operation


- 1. Problems of pulsed booster operation
 - CW HV power: 1100 kW
 - > 10 Hz pulsed RF power: typ 450 kW peak / 25 % duty cycle
 ⇒ High collector power: ≈ 1000 kW fluctuating at 10 Hz
 - Drive modulation

 multipactor regions difficult to avoid
 sometimes klystron instabilities: not dramatic for normal booster

2. ESRF plans frequent topping up operation (1 injection every 5 min)

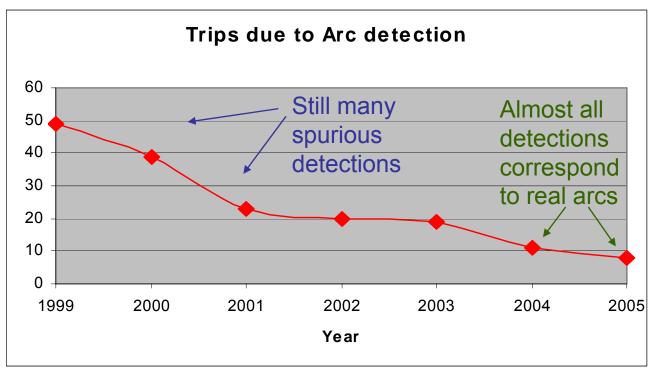
- ➢ RF ON for 30 s every 5 min
- Planned RF LOW & HV LOW in-between
- No experience so far \Rightarrow questions:
 - One of the term of term
 - \rightarrow reduce filament current?
 - Many cycles: fatigue?
- Klystron instabilities not tolerated for topping up

4. Waveguide switches

Already

- 3 waveguide switches destroyed
- 15 installed / 2 good spares left
- Mechanical problems:
 - RF fingers
 - Flap position
 - Limit switch adjustment

Experience \Rightarrow


- Arc detectors not too far (maximum at 1 bend, 2 to 3 m distance)
- $\blacktriangleright \quad \mbox{Several arcs} \Rightarrow \mbox{immediate} \\ \mbox{verification and maybe exchange} \\ \label{eq:several}$
- Regular check
 - 1st Mechanical ajdustment, incl. axis excentricity

 2^{nd} Check RF isolation $\ge 80 \text{ dB}$

4th CW & High Average Power RF Workshop, APS'2006

Result from systematic improvement of arc detectors [J.-M. Mercier, 3rd CW & High Power RF, SLS, 2004]

Places where arcs typically occur, and where fast detection is important:

- Magic Tee splitters (matching post)
- Phase shifters (RF fingers)
- Waveguide switches (RF fingers)

6. New HV deck

Includes

- Anode modulator
- Filament PS
- Control rack: optical fibre communication, interlocking and status control
- Refurbishment after 15 years and several faults indicating aging
- New HV deck prototype ready for tests:
 - June 2006: on SRRF2 in teststand operation
 - > Autumn 2006: on SRRF1 in normal operation on SR

	Old HV deck	New HV deck
	Resonant Inverter + Crockcroft (20 kHz): 120 kV - 10 mA	Resonant inverter + step up transf (100 kHz): 70 kV – 8.6 mA
Mod anode PS	Weight ≈ 80 kg	Weight ≤ 10 kg
	\Rightarrow difficult to replace	\Rightarrow easy and fast exchange
	Price: 41000 € in 1995	Price: 5600 € in 2004
	Linear: 30 V - 28 A	Switched: 40 V - 30 A
Filament PS	Weight ≈ 20 kg	Weight ≈ 2 kg
	Price: 5000 € in 1995	Price: 2400 € in 2002

4th CW & High Average Power RF Workshop, APS'2006

7. Cavities

- Not many trips (3 break downs in 2005)
- Fast vacuum interlock protects windows against glow discharges with Cu sputtering
- Not a single glow discharge in 2005: also no event detected with new optical detection using CCD [J.-M. Mercier, 3rd CW & High Power RF, SLS, 2004]
- © Several days operation at 200 mA without window air cooling on one cavity (by mistake): heating but no damage !

Main conclusions

- RF reliability comparable to other machine equipment \rightarrow ca. 20-25 % of machine trips and down time
- Continuous effort for doing better AND refurbishment of auxiliary equipment:
 - \Rightarrow Hope to further increase the reliability
- If carefully tuned and followed up, 1.3 MW klystrons turn out to be very reliable:
 - Klystrons & HVPS together responsible for less than 20% of RF down time
 - No klystron failure since December 98
- Greatest problem of klystrons is pulsed operation for the booster rather than high CW power for SR