

Fourth CW and High Average Power RF Workshop - 2006

The Spallation Neutron Source Accumulator Ring RF System

T. Hardek, M. Piller, M. Champion, M. Crofford (ORNL) A. Zaltsman, K Smith (BNL)

First Beam On Target

SNS Channel 4 Last Update: 4/28/2006 2:13:33 PM

1.2e13 Protons On Target

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY SPALLALION NETTEON SOURCE

Overview

- List of Participants
- General SNS Machine Background
- Accumulator Ring RF System Details
- Present Status
- Some current operational results
- Conclusions

Brookhaven and Original ORNL Staff

BNL

ORNL

Alex Zaltsman Kevin Smith Mike Blaskiewicz John Butler Freddy Severino Pablo Rosas Project Manager LLRF Engineer Physics PLC Engineer Analog/LabView Controls HV Supplies

Tom Owens Brian Gross John Reed RF Engineer RF Technician Low Level Controls

Present ORNL Support

Tom Hardek Maurice Piller Mark Crofford Lead RF Engineer LLRF Engineer LLRF Engineer

Mike Clemmer Dale Heidenreich John De Baca Mark Cardinal Rob Peglow Robert Wilson

Pam Gurd Kay-Uwe Kasemir Xiaosong Geng Lead RF Technician RF Technician RF Technician RF Technician RF Technician RF Technician

High Level RF EPICS Controls LLRF EPICS Controls PLC & EPICS Controls

SNS Facility – Artists View

Site Photo - 2005

Overall Site Layout

Layout of Linac RF Modules

402.5 MHz, 2.5 MW klystron	3 Transmitter	3 Modulators
😝 805 MHz, 5 MW klystron	4 Transmitter	4 Modulators
805 MHz, 0.55 MW klystron 805 MW klystron 805 MW k	16 Transmitter	8 Modulators

Accumulator Ring Parameters

•	Circum	248 m
•	Energy	1 GeV
•	frev	1 MHz
•	Qx, Qy	6.23, 6.20
•	ξ x , ξ y	-7.9, -6.9
•	Accum turns	1060
•	Final Intensity	1.5x1014
•	Peak Current	52 A
•	RF Volts (h=1)	40 kV
•	(h=2)	20 kV
•	Injected Pulse	645 ns
•	Injected Gap	300 ns
•	Extracted Pulse	695 ns
•	Extracted Gap	250 ns

RF System Parameters

- 4 Cavities Two Gaps per Cavity
- 3 Fundamental Revolution Frequency Cavities 7 kV per Gap
- 1 Second Harmonic Cavity 10 kV per Gap
- Each Cavity has one Final Amplifier
- The System must handle 52 amperes peak beam current
- Beam Loading Compensation Cavity Tuning, Feed Forward
- Single Turn Delay RF Feedback is possible but will take some development.

First RF Station at ORNL – April 2004

Amplifiers and Cavities installed in Ring

Final Amplifier - THALES TH558

Station RF21 in Ring Service Building

Filament Supply

Anode Power Supply Rack

Anode Capacitor Bank

Cavity Tuning Supply

DC Bias and RF Currents in the Cavity

Cavity Internal View

Amplifier Coupling Loop

Gap Capacitors

- Drive loop is a wire that passes through a tube welded to the beam pipe.
- Gaps are connected by heavy straps.
- Ferrite housing and Beam pipe form the bias winding

Gap Connecting Buss

Cavity Resonance Curves

Note that the higher ٠ voltage resonance curves are really skewed

We are probably pushing the ferrite too hard.

Amplitude feedback loop will be difficult.

Dynamic Tuning Supply

Output Voltage

-4

-6

-0.015

- System design requires a 450 ampere 180 Hz sinusoidal current swing from the Cavity Dynamic **Tuning Supply to help** compensate for beam loading.
- Excessive connecting lead inductance could require higher voltages than available from the supply.
- We measure 25.5 uHy. -Well within the supply range.
- Supply capable of -18 Volts to +24 Volts.

0.005

0.01

100

0

0.015

Dynamic Tuning Supply 420 Ampere, 180 Hz Sine Wave

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

-0.01

-0.005

0

Time

Present Operational Status

- The system is fully operational
- We have stored 5e13 Protons
- The Slow Feedback system had trouble holding 5e13 protons but we have not spent much time adjusting the system (one 4 hour shift)
- We have not tried Cavity Dynamic Tuning
- The Feed-Forward system included in the original design is under development

Ideal RF Waveform and Calculated Bunch Shape

Fig. 5.8.1: Simulation results for SNS just before extraction including beam loading for h = 1 with one turn delay feedback. Parameters are described in the text and Table 5.8-2.

V₀ = Ideal RF Voltage Vg - V₀ = Actual RF Voltage - Ideal RF Voltage Vsc = Space Charge Induced Voltage Vr = Voltage Due To Parasitic Resistance I = Beam Current 2nd harmonic is added to reduce the peak beam current.

For low intensity beam cycles the 2nd harmonic cavity is not needed.

4e13 Protons – Nicely Bunched, No 2nd Harmonic

5e13 Protons – Present RF Limit

Low Level System Screen

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

SPALLATION NEUTRO

Conclusions

- Final Amplifiers are capable of supplying the current needed to compensate for beam loading
- Cavity Dynamic Tuning will be necessary
- With some adjustment the slow analog feedback along with Cavity Dynamic Tuning should allow us to reach design intensity.
- A Feed-Forward system that records a beam current sample and feeds it to the amplifier to counter beam current will be necessary for higher intensities.

