Bolometer Arrays for High-Resolution Spectroscopy

64-pixel x-ray microcalorimeter array

Kent Irwin, NIST

Microcalorimeters: no gap, no Fano limit, thermal fluctuations

STJs: a gap much smaller than semiconductors (Friedrich)

1,280-pixel bump bonded array for THz

- Microcalorimeters and bolometers
- Multiplexed readout
- Soft and hard x-ray results
- Cryogenics
- The future: 4 possible arrays for synchrotron applications
- Emerging microwave readout techniques

NIST staff

NIST Boulder: James Beall **Randy Doriese** William Duncan Lisa Ferreira Gene Hilton **Rob Horansky** Kent Irwin **Ben Mates** Nathan Miller Galen O'Neil

Carl Reintsema Dan Schmidt Joel Ullom Leila Vale Yizi Xu

NIST Gaithersburg: Dale Newbury Terry Jach John Small

Bolometers / Microcalorimeters

Bolometers / Microcalorimeters

Photon

Bolometers / Microcalorimeters

Photon → Heat

NĽ

Superconducting Transition-Edge Thermometer

Transition-Edge Thermometer (TES)

Superconducting Transition-Edge Thermometer

Molybdenum-Copper Bilayer TES

• A bilayer of a thin superconducting film and a thin normal metal acts as a single superconductor with a tunable T_c - the "proximity effect"

Molybdenum-copper
 Robust and temperature stable
 Molybdenum T_c ~ .92 K
 Copper normal

NIST Superconducting Clean Room Facility

- 2700 sq ft class 100 dedicated superconducting integrated circuit / MEMS space
- I-line 5x lithography
- Niobium trilayer system
- Mo-Cu TES bilayer system
- ECR PECVD deposition
- Bosch "deep" RIE
- XeF_2 etch system
- E-beam lithography
- Reticle generation
- Sputter deposition (x2)
- LPCVD (x2)
- Thermal oxide / diffusion (x2)
- Thermal deposition (x2)
- RIE (x2)
- Plasma etching
- Ion mill etching

TES Fabrication

64-pixel microcalorimeter array

1,280-pixel SCUBA-2 subarray

TES + soft x-ray absorbers

250 μm pixels6.7 μm thick Bismuth

Top View (SEM)

TES + hard x-ray / γ-ray absorbers

SQUIDs

SQUID Current Amplifier

• The most sensitive devices for the measurement of magnetic fields.

 SQUIDs operate by quantum interference between two Josephson tunnel junctions

• The output voltage is a periodic function of the applied magnetic flux.

SQUID Fabrication

- Nb/Al/Al₂O₃/Nb trilayer technology
- Low temperature (30 C) ECR PECVD SiO₂
- Two wiring and dielectric levels
- PdAu shunt and damping resistors
- 10 lithography levels

100-SQUID Series Array for the Cryogenic Dark Matter Search

1,280-pixel MUX Array for SCUBA-2

1 × 32 MUX Array

Bolometric energy resolution

104

Microanalysis system on SEM

Thin-Film Analysis

The high energy resolution of the microcalorimeter also provides a high peak-to-background ratio, allowing better thin film & trace element analysis

Ref. Geer et. al.

Nanoscale Particle Analysis

- Contaminant particles in semiconductor processing lower yield
- Low beam energies to localize x-ray production in ~60 nm particle
- High energy resolution to resolve overlapping x-ray lines

Resolving peak overlaps

Trace-Element Analysis

The high energy resolution of the microcalorimeter also provides a high peak-to-background ratio, allowing better thin film & trace element analysis

0.7 wt. % Cu measured in WSi₂ thin film

Collaboration with Vartuli and Stevie (Lucent)

Chemical shift analysis

- Chemical bonding state causes small (< 1 eV) shifts in x-ray line position
- Industrially important problem: Al particles on oxide substrates.

Al oxide particle

Particle samples provided by Alain Diebold (SEMATECH)

Chemical shift map

NIST

Multiplexed THz bolometer array: SCUBA-2

A superconducting pixel detector?

TES bolometer pixels

SQUID MUX pixels

SCUBA-2

1,280-pixel TES bolometer

A collaboration of the UK, Canada, and NIST
SCUBA-2 will consist of 10,240 TES bolometer pixels (half at 450 μm, half at 850 μm) on the

1,280-pixel SQUID Multiplexer

bumpbonded subarray (TES+MUX)

Manufacturability

We are fabricating eight 1,280-pixel THz arrays for SCUBA-2

Multiplexed x-ray arrays

6.25 mm

NIST

Multiplexed x-ray calorimeter results

100 mK cryogenics

2-stage adiabatic demagnetization refrigerator (ADR)

ADR and cryogen vessels mounted on SEM

Currently assembling a compact, cryogen-free ADR system compatible with modern SEMs

Each magnet cycle gets you to ~ 55 mK and ~ 24 hours < 100 mK

NIS full chip cooling

NIS refrigerator chip

- Like a superconducting Peltier cooling
- Allows ADR temperatures from a cheap, robust, commercial He-3 refrigerator (~ 20 k\$)

Microwave SQUID multiplexers

Resistor simulates TES

- Many SQUIDs / bolometers coupled to high-Q resonators
- Possible future pathway to much larger arrays 100,000+ pixels
- Scalable to >10,000 pixels in one output channel with large per-pixel bandwidth

•One output cable + one HEMT amplifier for thousands of pixels

Development possible over 5-10 years

All pixels 250 μm in size...

Optimization	Е	$\Delta \mathrm{E}_{\mathrm{FWHM}}$	array size	Array count rate	Timescale
Best resolution	0.1 – 10 keV	3 eV	32 × 32	200 kHz	~ 3 years
Best count rate 1 keV	0.1 – 1 keV	6 eV	100 × 100	20 MHz	~ 5 years
Best count rate 10 keV	0.1 – 10 keV	20 eV	100 × 100	5 MHz	~ 5 years
Microwave	0.1 – 10 keV	5 eV	100,000	100 MHz	5 - 10 years

Can also make instruments for THz, IR, visible & UV, γ -ray

NL