Integrating Pixel Array Detectors

Sol GrunerDept. of Physics & CHESS Cornell University

Detector development group **Mark TateAlper Ercan Dan SchuetteDarol ChamberlainLucas KoernerHugh Phillip**

*Former members***Sandor BarnaBob WixtedEric Eikenberry Guiseppe Rossi Matt Renzi**

Basic Pixel Array Detector (PAD)

Diode Detection Layer

• **Fully depleted, high resistivity** • **Direct x-ray conversion** • **Silicon, GaAs, CdTe, etc. Connecting Bumps** • **Solder or indium**• **1 per pixel CMOS Layer** • **Signal processing** • **Signal storage & output** *Gives enormous flexibility!* X-rays

Why Analog-Integrating?

Some Common Sense Rules

Rule #1: There is no universal detector. At best, a given detector is well-suited for a given application.

- **Community needs are met by a spectrum of detectors optimized for different applications.**
- **Analog PADs meet specific needs. Examples will follow.**

Why Analog-Integrating?

Some Common Sense Rules

Rule #2: The accuracy of a given measurement is not necessarily better or worse just because a photon-counting or an analog-integrating detector is used.

Accuracy depends on many real-world details of both the experiment and the detector, including:

- **Calibrations**
- **Stability**

• **Photon loss due to, e.g., pixel signal-sharing, charge recombination, count-rate limitations, and x-ray absorption by inert structures**

• **Systematic effects, e.g., cross-talk, pickup noise**

Analog-integrators have successfully demonstrated excellent performance to appropriate accuracy in certain experiments.

Why Analog-Integrating?

Some Common Sense Rules

Rule #3: Any detector is only as good as its calibration. In practice area detectors rarely achieve accuracies of 1%, and never better than a few tenths percent.

This is especially true for:

- **Signals whose width is smaller than a pixel**
- **Very high local count-rates**

For certain applications, analog-integrators have been very successfully calibrated.

Why Analog-Integrating?

Some Common Sense Rules

Rule #4: No matter how good you think a detector is, you are bound to be in for nasty surprises when you actually perform stringent performance tests.

Be skeptical of detector claims that are not backed up by appropriate, independently-repeated test data.

Analog-integrators have been around long enough that many of the nasty surprises are understood.

- **Very high local count-rates. Examples:**
	- 9 **Time-resolved radiography (e.g., >1010 x-ray/pix/sec)**
	- 9 **Many XFEL & ERL applications (e.g., x-rays in femtoseconds)**
	- 9 **Very low contrast imaging against high local backgrounds**

Analog-Integrating PADs are especially useful for…

- **Very high local count-rates. Examples:**
	- 9 **Time-resolved radiography (e.g., >1010 x-ray/pix/sec)**
	- 9 **Many XFEL & ERL applications (e.g., x-rays in femtoseconds)**
	- 9 **Very low contrast imaging against high local backgrounds**
- **Accurate measurements of small-sized signals. Examples:**
	- \checkmark **Microcrystallography from low mosaic spread crystals.**
	- \checkmark **Micro-radiography and tomography**
	- 9 **Accurate difference imaging of spatially fine features.**

Analog-Integrating PADs are especially useful for…

- **Very high local count-rates. Examples:**
	- 9 **Time-resolved radiography (e.g., >1010 x-ray/pix/sec)**
	- 9 **Many XFEL & ERL applications (e.g., x-rays in femtoseconds)**
	- 9 **Very low contrast imaging against high local backgrounds**
- **Accurate measurements of small-sized signals. Examples:**
	- 9 **Microcrystallography from low mosaic spread crystals.**
	- 9 **Micro-radiography and tomography**
	- 9 **Accurate difference imaging for images with fine features.**
- **Problems involving complex analog signal processing. Example:**
	- 9 **In-pixel time-correlation of images (e.g., high count-rate speckle experiments).**

Cornell 100x92 Analog PAD

1.2 mm HP CMOS process (MOSIS) (Linearized Capacitors) 15 x 13.8 mm² active area; 100x92 pixels 150 mm square pixel 300 mm thick, high resistivity Si diode wafer (SINTEF) 120 mm solder bump bond (GEC-Marconi)

100x92 PAD developers include: Sandor BarnaEric Eikenberry Alper Ercan Sol GrunerMatt RenziGiuseppe Rossi Mark TateBob Wixted

G. Rossi, et al, J Synchrotron Rad. (1999). 6, 1095-1105.

100 x 92 Prototype Tests

Test results with 8.9 keV x-rays

High speed radiography: Supersonic spray from diesel fuel injector

X-ray beam

- •**CHESS Beamline D-1**
- •**6 keV (1% bandpass)**
- • **2.5 mm x 13.5 mm (step sample to tile large area)**
- •**10⁸ - 10⁹ x-rays/pix/s**
- •• 5.13 μs integration (2x ring period)

Diesel Fuel Injection System

- •**Cerium added for x-ray contrast**
- •**1350 PSI gas driven**
- •**1.1 ms pulse**
- •• 1 ATM SF₆ in chamber

Collaboration: Jin Wang (APS) & S.M. Gruner (Cornell)

See: McPhee, Tate, Powell, Yue, Renzi, Ercan, Narayanan, Fontes, Walther, Schaller, Gruner & Wang *Science* **295 (2002) 1261-1263.**

Diesel fuel injector spray

- •**1.3 ms time sequence (composite of 34 sample positions)**
- •**·** 5.13 μs exposure time (2.56 μs between frames)
- •**168 frames in time (21 groups of 8 frames) Average 20x for S/N**
- •**Sequence comprised of 5 x 104 images**

Gasoline fuel injector spray Gasoline fuel injector spray

X-ray beam

- •**CHESS Beamline D-1**
- •**6 keV (1% bandpass)**
- •**2.5 mm x 13.5 mm**
- •**(step sample to tile large area)**
- •**109 x-rays/pix/s**
- •**• 5.13** μs integration (2x ring period)

Fuel injection system

- •**Cerium added for x-ray contrast**
- •**1000 PSI gas driven**
- •**1 ms pulse**
- •**1 ATM Nitrogen**

Collaboration: Jin Wang (APS) & S.M. Gruner (Cornell)

See: Cai, Powell, Yue, Narayanan, Wang, Tate, Renzi, Ercan, Fontes & Gruner Appl. Phys. Lett. 83 (2003) 1671.

See poster for more experiments

PAD design: Matt Renzi, Alper Ercan

Tests: Alper Ercan

water.

120 frames/sec

• **Calibration issues limit accuracy to few tenths percent, e.g., 1 part in 1,000 exceeds state-of-art.**

• **Range of numbers in an image (e.g., SAXS) may span many orders of magnitude.**

Suggests that users really want to record images that span many orders of magnitude of intensity across the image, but only need few tenths % accuracy at any location.

Mixed Mode Pixel

Crystallography detector:

Goals:

- **Increase dynamic range (107 x-rays)**
- **Keep high count rates (>108 Hz)**
- **Fast framing (< 1ms dead time)**
- **2k x 2k pixels, 150** P**^m pixel size**

Methods:

- **Integrating pixel w/ digital overflow counter / charge reset**
- **Analog remainder read at end of frame**
- Fabricated in 0.25 μm TSMC 3.3 V, metal on metal capacitors

Collaboration with ADSC. See

S.G. Angello, et al, *IEEE 2004 Nuc. Sci. Symposium***, Rome, (Oct. 16-22, 2004).**

Integrating PAD for LCLS Single Particle Imaging

Imaging requirements

- Large solid angle coverage
- <230 fs pulses. Perhaps 2fs.
- 120 Hz framing
- 10¹² x-rays/pulse
- 0 1000 x-rays / pixel Distinguish between 0 and 1 x-ray

Pixel detector 1: Wide angle

S/N per x-ray >> 1 Dynamic range $\sim 10^3$ > 512 x 512 pixels

Pixel detector 2: Small angle S/N per x-ray \sim 1 Dynamic range $\sim 10^3$ - 10⁴ > 512 x 512 pixels

Integrating Pixel Array Detectors

Sol GrunerDept. of Physics & CHESS Cornell University

Detector development group **Mark TateAlper Ercan Dan SchuetteDarol Chamberlain Bob Wixted Lucas KoernerHugh Phillip**

*Former members***Sandor BarnaEric Eikenberry Guiseppe Rossi Matt Renzi**

