Detectors for

X-ray Science

Heinz Graafsma

<2006: European Synchrotron Radiation Facility</p>

X-ray Science?

- Medical Imaging
- Security and safety inspection
- Non-destructive testing
- Space Science
- Analytical tool in home lab
- Storage rings
- XFELS

What will be covered?

- Detectors for Storage Rings "today"
- Detectors for "tomorrow"
- Detector requirements for XFEL's
- Summary
- Remarks

Today versus Tomorrow Integrating versus Counting

Integrate

Heinz Graafsma; ESRF (DESY)

Integrating versus Counting

What really counts is the Signal-to-Noise ratio: S/N

Heinz Graafsma; ESRF (DESY)

Detectors for SR today: « Take what you can »

Heinz Graafsma; ESRF (DESY)

Our workhorse: CCD based systems

– Indirect detection ==> losses & spreading Integrating detector=> noise & information loss

Heinz Graafsma; ESRF (DESY)

Situation now

High resolution imaging with CCD's

Scintillator is very inefficient

Full tomo dataset in 10 sec.

Heinz Graafsma; ESRF (DESY)

Pixel Array Detector

Heinz Graafsma; ESRF (DESY)

Really low noise:

Heinz Graafsma; ESRF (DESY)

High-resolution IXS spectrometers: basics

detector

critical components:

DOE WS, Dec. 2005, APS

Heinz Graafsma; ESRF (DESY)

Resolution (ΔE)

Heinz Graafsma; ESRF (DESY)

Problems to overcome:

- Radiation tolerance
- Charge sharing
- Yield
- 4 side-butting (3D connectivity)
- High Z sensors (GaAs, CdZnTe)
- Limited energy resolution

Energy Resolving Detectors Silicon Drift Detectors:

Heinz Graafsma; ESRF (DESY)

DOE WS, Dec. 2005, APS

Back

AVALANCHE PHOTODIODE

- Energy range : 3 keV < EX-ray < 30 keV (limited by thickness)</p>
- Counting rate: ~ 10⁷ cps
- Dark noise: ~ 0.01 cps
- Energy resolution: ~20 % @ 24keV

~39% @ 12keV

Time resolution: ~ 1ns

Heinz Graafsma; ESRF (DESY)

AVALANCHE PHOTODIODE

•Hamamatsu

- $5x3mm^2 135 \ \mu m$ available
- \$\phi=3mm 135\mum (proto)

•EGG

- 5x5mm² 110μm
- • $10x10mm^{2}$ 110 µm

Acquisition system : ACE (APD Controller Electronic)

- Principle of use: amplitude (mV) \Leftrightarrow energy(eV)
 - 1 counter, 2 thresholds (high and low) for level discrimination
 - Counter with low level only = integral counter.
 - Counter with low-high level = counter in energy range.

ACE (APD Controller Electronic)

* ISG

APD CONTROLLER

AL ARM

GATE IN

Detectors for tomorrow? "make what you need"

- 1. Parallel readout CCD's
- 2. Hybrid (counting) Pixel detectors
- 3. Si Drift Detectors
- **4.** Avalanche Photodiode arrays
- **5. Diamond based detectors**

Fast CCD-based Systems for Detection of X-rays and Electrons

H. A. Padmore¹, C. Bebek², M. Church¹, P. Denes³, J. Glossinger¹, S. Holland², H. von der Lippe³ and J. P. Walder³

> Lawrence Berkeley National Laboratory ¹ ALS, ² Physics and ³ Engineering Divisions

- CCDs for synchrotron radiation x-ray research

- Development of optical CCDs at LBNL

- Column Parallel CCDs

- Status report

Heinz Graafsma; ESRF (DESY)

Prototype (almost) Column Parallel CCD Readout Structure

What are the Detectors for tomorrow?

- 1. Parallel readout CCD's
- 2. Hybrid (counting) Pixel detectors
- 3. Si Drift Detector arrays
- **4.** Avalanche Photodiode arrays
- **5. Diamond based detectors**

Next Generation Pixel Array Detectors

- More functionalities (dubble buffering, XPCS, energy resolution,...) (ex. MEDIPIX-3)
- Fully four side buttable (large areas)
- Extreme Radiation hard design
- Different Diode layer materials (GaAs)

Heinz Graafsma; ESRF (DESY)

Heinz Graafsma; ESRF (DESY)

What are the Detectors for tomorrow?

- 1. Parallel readout CCD's
- 2. Hybrid (counting) Pixel detectors
- 3. Si Drift Detector arrays
- Avalanche Photodiode arrays
- 5. Diamond based detectors

Fig 10: Multichannel drift detector consisting of 19 hexagonal 5mm2 SDDs.

Heinz Graafsma; ESRF (DESY)

The PN-CCD principle

Fig.13: A schematic cross section through the pn-CCD along a transfer channel. The device is back illuminated and fully depleted over $300\mu m$ thickness. The electron potential perpendicular to the wafer surface is shown on the right hand side.

Heinz Graafsma; ESRF (DESY)

Table 3: Comparison of expected properties of pn-CCDs in ROSITA with those reached at XMM. The energy resolution (FWHM) refers to incident X-rays of the $Mn K_{\alpha}$ line at 5.9keV and CK_{α} measured at temperatures around-100 °C.

Property	XMM	ROSITA	XEUS Prototypes tested	
Status	Operating in orbit	Produced and tested		
type	full frame	frame store	DEPFET pixel sensors	
Format	400x384	256x256	1024x1024	
pixel size	$15 \mathrm{x} 150 \mu m^2$	$75 \mathrm{x} 75 \mu m^2$	$50 \times 50 \ \mu m^2$ or $75 \times 75 \ \mu m^2$	
readout noise	5 electrons	3 electrons	1 electron	
sensitive thickness	295 µm	450 μm	450 μm	
frame rate	15 frames/sec	20 frames/sec	200 (1000) frames/sec	
readout speed	350 ns/pix	100 ns/pix	50 ns/pix	
energy resolution at Mn $_{K\alpha}$ (5.9keV)	140 eV	130 eV	125 eV	
Operating temperature	-100°C			
energy resolution at C $_{K\alpha}$	130 eV	80 eV	45 eV	
energy range	0.15 keV - 15 keV	0.1 keV - 20 keV	0.05 keV - 20 keV	

Heinz Graafsma; ESRF (DESY)

What are the Detectors for tomorrow?

- 1. Parallel readout CCD's
- 2. Hybrid (counting) Pixel detectors
- 3. Si Drift Detector arrays
- 4. Avalanche Photodiode arrays
- **5. Diamond based detectors**

What are the Detectors for tomorrow?

- 1. Parallel readout CCD's
- 2. Hybrid (counting) Pixel detectors
- **3.** Si Drift Detector arrays
- **4.** Avalanche Photodiode arrays
- 5. Diamond based detectors

Why diamond?

 $Z = 6 \rightarrow$ low specific X-ray absorption/beam scattering

High charge carrier saturation velocity ($\sim 3 \times 10^7$ cm/s) and low dielectric constant (5.5)

-> fast pulse response (~nsec in practical devices) wide bandgap energy (5eV), excellent thermal/mechanical properties

-> low leakage currents at high temperature, high heat load 'white' beam monitoring possibility

why single crystal material?

no grain-boundary artifacts

charge-carrier lifetime >50nsec -> 100% charge signal collection over ~mm distances)

X-Ray BPM tests of *single crystal CVD* diamond plate at (ID21, May 2005)

0.2mm quadrant spacing diamond signal (nA) 0 **Element-Six** Linear CVD diamond -10 crossover plate, 100µm position 50% -20 thick. response to -30 200um 50nm Cr-Au upper left quadrant (pinhole) beam upper right guadrant -40 contacts -5(5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 • exp' data diamond signal (nA) X-ray uniformity map with linear fit (Origin7) Signal 7.2keV beam, 10⁸ ph/sec, linearity with $1x0.4\mu m^2$: beam intensity over image contrast is from the 4 decades diamond signal current 100 % beam intensity 0.00E+000 5.00E+007 1.00E+008 1.50E+008

Conclude:

• Viable as BPM/intensity monitor operated in dc or RF modes, spatial resolution << µm • Possible white beam, bunch-by-bunch monitor (tests in planning)

Detector requirements for XFELs

 Integrating Pixel Detectors, with single photon sensitivity

Introduction: Characteristics of XFEL radiation

Photon energy

Photon per pulse Divergence Source appearance Bandwidth

Pulse duration Repetition rate X-rays: 3 up to 15 keV (λ = 1Å) (soft X.: 200 up to 2000 eV) 10¹² (up to 10¹⁴) < 1 up to few 10 µrad ~ 100 µm (diffraction limited) ~ 0.1 %

100 – 300 fs (probably decreasing) Macro-Bunch (MB): 10 – 120 Hz single bunches within MB: \leq 5 MHz

Short pulse high energy radiation from spontaneous emissionPhoton energy100 – 400 keVPhotons per pulse~108 / 0.1%bw

Heinz Graafsma; ESRF (DESY)

Requirements: Imaging

- Pixel Size [µm]
- **Number of Pixels**
- **Need for tiling**
- Signal rate/pixel/bunch
- **Single photon resolution**
- Photon energy range [keV]
- **Quantum efficiency**
- Environement
- Timing

Heinz Graafsma; ESRF (DESY)

30 (<30) 1k x 1k $(2k \times 2k)$ yes up to 10e5 yes 8-12 **>0.8** (1) vacuum **120Hz** (LCLS)

Resources (1)

Cost estimate (R&D programme) for two 2-D detector systems based on two different technologies: Active Pixel Sensor (APS) and Hybrid Pixel Sensor (HPS). Both systems provide a pixel-size of about 100 microns and are supposed to be compatible with the XFEL time structure. In each case a two step development process is assumed: i) Design and development of a small (e.g. 4-K or 128-K) prototype system with a subsequent extension to a ii) full scale 1-M detector. It is furthermore assumed that the minimum duration of the respective project generations is 4 years (i) and 2 years (ii), respectively. The data are based on a study carried out at DESY.

System 1: Program duration Costs

Total

System 2:

Program duration Costs

Total

APS 4 at least 4 Capital (3165	4-K 4 years (kEuro) Personel (FTE) 40	APS 1-M at least 2 years Capital Personel 1980 15		
HPS at least a Capital	128-K 4 years Personnel	HPS 1 at least 2 Capital	I -M 2 years Personnel	
2220	34	2435	13	

Resources (2)

Possible Scenario:

Postpone a technology decision (for a given system) as long as possible. This implies tio develop prototypes of System 1 <u>AND</u> System 2 and decide after the test of the respective prototypes. This approach would yield:

			Capital (kEuro)	Personnel (FTE)		
	Total C	osts System 1+2:	5385	74	4 years	
	+ APS	1-M	1980	15	2 years	
	or HPS	1-M	2435	13	2 years	
This results in to	total cost	s of :	7365	89	6 years	(APS)
			7820	87	6 years	(HPS)
Summary:	It seem	s advisable to for	esee and	d reserve fund	s of about:	
	7.8 MEı	ro + 89 FTE cove	ring a pe	eriod of 6 yea	rs	

(2005 price basis)

Heinz Graafsma; ESRF (DESY)

Summary

- Parallel readout CCD's: Fast imaging
- Counting Pixel Array Detectors: Many applications
- Silicon Drift Detectors: Imaging with spectroscopy
- Avalanche Photodiode arrays: Fast timing
- Diamonds: Beam monitoring
- Integrating Pixel Array Detectors: XFEL (and others)

Remarks for discussion

- Storage Rings: from Integrating to Counting
- Future detectors are Si-based
- R&D/prototyping is fun and needed, but don't forget production
- Our community should push more materials: GaAs and Diamond
- A push for 3D-hybridization is needed
- Micro-electronics seems to be "covered"
- Detector R&D should be based on Facility Funding!