

Superconducting Tunnel Junction Detectors

Stephan Friedrich

Lawrence Livermore National Laboratory

Advanced Detector Group, LLNL Advanced Biological and Environmental X-ray Facility, LBNL

Outline:

- I. Overview: Why STJ detectors, and for which applications?
- II. Science: The chemistry of dilute samples by X-ray absorption spectroscopy (XAS)
- III. Detector requirements for XAS
- IV. STJ detector development roadmap

I. Overview: Why Cryogenic Spectrometers?

Cryogenic detectors offer advantages when better energy resolution than Ge or Si *and* higher efficiency than grating spectrometers are needed.

And then there are other analytical techniques: EPR, Raman, FTIR, Mössbauer, SIMS...

Cryogenic Detector Technologies

	Tunnel Junctions	Microcalorimeters
Operating principle	$E \Rightarrow \delta Q$ (electrons)	$E \Rightarrow \delta T \text{ (phonons)}$
\Rightarrow Max volume	low (\Rightarrow E _x < 10 keV)	high ($\Rightarrow E_x < MeV$)
Energy resolution	$[1.7\Delta_{sc}E_{x}(F+1+1/\langle n \rangle)]^{1/2}$	$[k_B T^2 C_{abs}(\alpha/n)^{1/2}]^{1/2}$
	~2 - 10 eV FWHM	~1 - 5 eV FWHM
Max. count rate	~30,000 cts/s	~500 cts/s
Device resistance	High, $> 1000 \Omega$	Low, $< 0.1 \Omega$
\Rightarrow Electronic readout	FET at room T	SQUID at 4 K
Max. operating T	~0.5 K	~0.1 K
Dead layer?	no	no

 X-ray astrophysics
 Nuclear science, Dark Matter

 Microcalorimeters are preferred for highest energy resolution and large volume absorbers. Tunnel junctions are preferred for high speed applications.

 Synchrotron applications

Cryogenic Detector Group

Superconducting Tunnel Junction Detectors

 $E_{FWHM} = 2.355\sqrt{(1.7\Delta E(F+1+1/<n>))}$

Small energy gap ($\Delta \approx 1 \text{ meV}$) \Rightarrow High energy resolution ($\approx 10 \text{ eV FWHM}$) Short excess charge life time (μ s) \Rightarrow (Comparably) high count rate ($\approx 10,000 \text{ counts/s}$)

STJ Spectrometer

10-15 eV FWHM below ~1keV, ~10⁶ counts/s total, solid angle coverage $\Omega/4\pi \approx 10^{-3}$ Quantum efficiency set by window transmission (low E) and Nb absorption (at high E).

II. Science: X-ray Absorption Spectroscopy

Fluorescence-detected XAS enables chemical analysis of dilute samples, if...

- 1) The detector can resolve characteristic X-ray fluorescence of interest,
- 2) Offers count rate capabilities sufficient for total fluorescence flux,
- 3) Covers a large solid angle for high sensitivity.

XAS: Chemistry of dilute samples

Material Science: Dopants and Impurities

Chemical analysis of ~1% N in a ~100Å buried film is possible in ~1 hour.

Analysis of more dilute dopants or of impurities is not.

Biophysics: Protein Reaction Mechanisms

Analysis of concentrated proteins (~100 ppm, mMolar) is possible in ~1 hour. Analysis of protein solutions is not, and 1 h at 10¹² photons/s is too long for many proteins. Radiation damage makes low-flux beam lines competitive with higher efficiency detectors.

Environmental Heavy Metal Contaminations

Heavy metal toxicity \Leftrightarrow Bio-availability \Leftrightarrow Solubility in water \Leftrightarrow Oxidation state

Again, ~100 ppm samples can be analyzed, but ppb contaminations can still be relevant.

From Nanoscience to Medical Imaging

Chemical analysis of dilute samples by soft X-ray spectroscopy has a vast range of applications. Higher sensitvity for more dilute samples would be very desirable.

BL 4.0.2 is the most desirable beam line at the ALS (8-times oversubscribed).

III. Detector requirements

1) Energy resolution: Sufficient to resolve weak characteristic X-ray fluorescence

- 2) Count rate: Sufficient for total flux at minimum detector distance of ~8 mm
- 3) Solid angle: Covering entire area where scatter does not dominate
- 4) Peak-to-background ratio: As high as possible

Which Energy Resolution do we need?

Once the lines are fully resolved, i.e. $E_{FWHM} < E_{separation}/3$, S/N does no longer depends on resolution for high P/B

The energy resolution of STJ detectors is <10 eV FWHM for energies below 1 keV

Line separations for soft X-rays are typically no less than $\sim 50 \text{eV} \Rightarrow$ The current STJ energy resolution of 10-15 eV below 1 keV is sufficient.

Resolution degrades for large pixels, which are limited in size to $\sim 200 \times 200 \mu m^2$

QE close to 1 is achievable for Ta and Pb-based STJs

Three IR windows limit QE for very low E < 200 eVThey also limit distance of STJ to sample to ~8 mm.

A 200×200µm² pixel at a distance of ~8 mm can cover $\Omega/4\pi \approx 3 \times 10^{-5}$ with a QE ≈ 1 .

Which Count Rate do we need?

Total flux $I_{F,total} \approx I_0 \varepsilon_{avg} \frac{\Omega}{4\pi} \eta_{det} \approx 10^{12} \cdot 10^{-3} \cdot 3 \cdot 10^{-5} \cdot 1 \approx 30,000 \text{ cts/s max}$

~30,000 counts/s is sufficient for a $200 \times 200 \mu m^2$ detector at 8 mm.

Actually, STJ arrays have very high count rate capabilities per unit area. There is no dead layer that limits the P/B ratio, but pile-up matters at high rates.

Which Solid Angle Coverage do we need?

Pixels	$\Omega/4\pi$	Sensitivity
36	0.1%	~100 ppm
100	0.3%	~3 ppm
360	1%	~1 ppm
1000	3%	~0.3 ppm
3600	10%	~0.1 ppm

For more than a few 1000 pixels, elastic scatter is likely to set S/N.

Multiplexing or Parallel Readout?

That depends on the application:

Multiplexing is complicated, and even more so for fast pulses. Multiplexing is crucial for space-based astrophysics with TES calorimeters. Multiplexing is not necessary for high-impedance STJ detectors.

LLNL is developing frequency-domain multiplexing for (slow) Gamma and neutron calorimeter signal readout (M. Cunningham et al., APL (2003))

We are not proposing to adapt our frequency multiplexing technology to STJ readout.

Parallel Wiring and ASIC readout

 $100 \times 1 \ \mu m$ Fe-Ni-Cr wires on polypropylene 12" length from 300K to base T, Au bonding pads ~200 Ω wire, 1.6 μ W heat load/ 1000 wires

Under development at UCSB for CMB studies with NIS and NTD (courtesy P. Lubin)

64-channel STJ ASIC (V64SARA) Low-noise, automated bias, dc V bias

Developed at IDEAS ASA and ESA for optical astronomy (courtesy D. Martin)

Parallel readout of high-impedance STJs with ASICs is possible.

Cooling Power Requirements

Multi-stage ADRs can provide continuous cooling power for up to $\sim 10^6$ wires!

Connecting these wires to the detector and the ASIC readout is daunting.

IV. Roadmap: STJ Detector Development

In operation

36 pixel Nb-Al STJs

courtesy IPHT Jena

Being Built

Next

256 pixels 1000 pixels 3600 pixels 10000 pixels

. . . .

(Fabricating larger arrays will not be the limiting factor.)

Development: ~\$1M

5 10 15 Energy [eV]

0

20

Roadmap: Readout Development

In operation

36 individual custom preamps Manual bias 36 individual ADCs

112 custom preamps Automated bias Seven 16-channel DSPs

112-chn DSP cost: ~\$110k

Courtesy W. Warburton, XIA LLC

128 (256?) channel ASICs Automated bias

Next

Development: ~\$1M

Courtesy IDEAS ASA Wiring development: ~\$500k

Roadmap: System Design

In operation

Being built

Liquid N2, He precooling to 4K,
plus 2-stage ADR to 0.1KPulse tube mechanical precooling to 4K,
plus 2-stage ADR to 0.1K

Refrigerator cost: ~\$200k

Next

Pulse tube mechanical precooling, plus 3-stage continuous ADR

Development: ~\$1M

Courtesy J. Höhne, Vericold Inc.

Courtesy P. Shirron, NASA GSFC

Summary

• Fluorescence-detected soft X-ray absorption spectroscopy has wide applications for sensitive chemical analysis of dilute samples.

• The performance of superconducting tunnel junction X-ray detectors is well-matched to the XAS requirements at third generation synchrotrons:

- Energy resolution ~10 eV FWHM for energies below 1 keV
- Count rates >30,000 counts/s per pixel, 10⁶ counts/36 pixel array.
- Higher sensitivity (~ppb) requires ~kilopixel arrays with ~10% solid angle:
 - Larger arrays, Ta or Pb-based absorbers
 - Parallel processing with photolithgraphic wiring and ASIC readout
 - User-friendliness: cryogen-free continuous operation, automation