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Charge-Coupled Devices (CCDs)Charge-Coupled Devices (CCDs)
What they are
Why they are ubiquitous

And who’s the competition
How they can be improved

P. Denes
Engineering Division
Lawrence Berkeley National Laboratory

CCDs – just keep
going and going
and going…
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Scientific CCDsScientific CCDs

� CCD invented in 1969 by Boyle 
and Smith (Bell Labs) as 
alternative to magnetic bubble 
memory storage

� LST (“Large Space Telescope” –
later Hubble) 1965 – how to 
image?
� Film was obvious choice, but -

It would “cloud” due to radiation 
damage in space
Changing the film in the camera 
not so trivial

� 1972 CCD proposed

Dumbbell nebula - LBNL CCD
Blue: H-α at 656 nm
Green: SIII at 955 nm
Red: 1.02 mm
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Conventional 3-Phase CCDConventional 3-Phase CCD

� Noiseless, ~lossless charge transfer
� High gain charge-to-voltage conversion ΔV = q/CFD

� Output amplifier (source follower, or …) on-chip
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Many ways to do thisMany ways to do this
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Several architecturesSeveral architectures

Ve
rt

ic
al

 c
lo

ck
s

Horizontal clocks

Full frame
Ve

rt
ic

al
 c

lo
ck

s

Horizontal clocks

Frame transfer
Rapid shift from image 
to storage
Slower readout of 
storage during integration

Ve
rt

ic
al

 c
lo

ck
s

Horizontal clocks

Interline



CCD.ppt P. Denes

Surface vs buried channel CCDSurface vs buried channel CCD

� MOS capacitor
� Potential 

maximum at Si –
SiO2 interface
� CTE < 1 due to 

trapping at 
interface

VG
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D
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� Potential 
maximum not at Si 
– SiO2 interface
� CTE  typically > 

99.9999%
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Frontside/Backside IlluminationFrontside/Backside Illumination
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Imaging DetectorsImaging Detectors

2D segmented Si
2D segmented Si attached
to 2D segmented Si 

2D segmented Si attached
to 1D segmented Si
or other electronics 

Monolithic
sensor+readout

on same substrate

Hybrid
Sensor

+
Readout
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Monolithic Image SensorsMonolithic Image Sensors

� Passive Pixel Sensor
� Proposed 1968
� No Reset, no in-pixel 

amplifier

SELECT

� Active Pixel Sensor
� Also proposed 1968
� Many ways to make 

the photodiode

RESET

SELECT
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CCD vs APSCCD vs APS

� APS – transfers a voltage down the column
� CCD – (noiselessly) transfers a charge down the column
� APS – can be more sensitive (source follower does not have to drive 

off-chip)
� APS – fill factor < 1 in general
� Photogate APS – like a matrix of individual CCDs
� Backside illumination – attempted for APS, work-in-progress

PG Xlike CCD
OTG

RESET

SELECT

FD
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GlossaryGlossary

Sensor
� “Quantum efficiency”

� Probability of detection
� Energy spread

� Point spread function (PSF)
� Conversion gain (may be in readout) – Volts / ___ (electron, eV, …)
� “Well depth” - QMAX

� Noise contribution, σSENSOR

Front-end readout
� Noise contribution, σELEC

Readout
� Full-scale - VMAX

� Speed – MPix/s (less ambiguous than fps)
System
� Frequency-dependent DQE or equivalent
� ⇒ Dynamic Range = min(QMAX, VMAX) / σSENSOR ⊕ σELEC

Sensor with
pixel pitch P

“dB” = 20 log10 (DR)
“bits” = log2 (DR)
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CMOS, CMOS “opto” and CCD processesCMOS, CMOS “opto” and CCD processes

Gate

n+ S n+ D

Channel Length L →L /κ

tOX → tOX /κ

WD

V→V /κ

CMOS driven by
constant field scaling

p substrate
Doping - NA→ κ NA

CCD CMOS

tOX (Å) 500 -
1000 50

Well depth 
(µm) 2.5 0.5

deeper for RF

Implant (µm)
~1
channel 
stop

0.1
S/D implants

V ≥10
<3.3
<2.5
<1.x …

Poly layers 3 (2) 1
2 for analog

Subst. quality Low 
leakage

Don’t care
Except opto
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Triple Poly CCD ProcessTriple Poly CCD Process

Poly 1

Poly 2

Poly 3

Gate oxide

ILD
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Why CCDs?Why CCDs?

� Low noise (noiseless charge transfer, do everything to 
make CFD small in order to get large conversion gain)
� Fill-factor = 1 (for backside illumination)
� Linear and easy to calibrate
� Long history of scientific use
� Large area devices easier (cheaper) to develop as CCDs

than as state of the art CMOS devices
� Readily wafer scale

� Commercially produced
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Very Large Format CCDs (and CMOS imagers)Very Large Format CCDs (and CMOS imagers)

� Fairchild Wafer Scale Full Frame CCD
� 9216 x 9216 x 8.75 µm pixel
� 80.64 x 80.64 mm2 size CCD
� Eight 3-stage output amplifiers
� Readout noise < 30e- @ 2/fps

� Cypress CYIHDS9000
� 3710 x 2434 x 6.4 µm pixel
� 23.3 x 15.5 mm2 size APS
� 0.13 µm imaging CMOS process

� Canon 16.7 MPix
� 36 x 24 mm2 4992 x 3328

� Kodak 39 MPix
� 36 x 48 mm2
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Electron-Multiplying CCDsElectron-Multiplying CCDs

� Long serial register with 
avalanche multiplication 
pixels

� Gain (1+ε)N ε~1%
� Good for single-photon 

sensitivity
� Nonetheless, current 

devices have limited (≤
12 bit) dynamic range

� Excess noise factor, F
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EM CCDEM CCD

e2v-97 512x512

TI-TC285 1004x1002
~12 bits
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Personal PrejudicePersonal Prejudice

� CMOS has overtaken CCD in the consumer market
� short integration time – leakage is not that important
� very high speed not required
� Limited analog performance ok - <10 bits linear, ~16 bits 

logarithmic
� Pixels! “The triumph of marketing over physics” – E. Fossum

� CCDs will continue to dominate size x dynamic range
� size x dynamic range x speed are what is needed by the scientific 

community
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Direct x-ray detectionDirect x-ray detection

� Well established use of CCDs in x-ray astronomy
� Excellent spectroscopic resolution possible

x-ray view of the galactic center
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☺ and /☺ and /

� Excellent spectroscopic resolution
� But only if not piled-up – low rate or fast readout
� Nγ,MAX = Well Depth / (Eγ /3.6 eV)

� <1000
� ⇒ 9-10 bit ADC OK

� Would really profit from high-speed readout as S/N is so 
high
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Back-illumination preferredBack-illumination preferred

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

10 100 1000 10000

Eγ [eV]

Tr
an

sm
is

si
on

 [S
iO

2]

1.5 nm
10 nm
100 nm
1,000 nm
10,000 nm

“T
hi

n 
w

in
do

w
”δ-doped

Fr
on

t 
ill

um
in

at
io

n



CCD.ppt P. Denes

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 5000 10000 15000 20000 25000 30000
Eγ [eV]

Tr
an

sm
is

si
on

200 um
300 um
600 um
20 um

Thick SiliconThick Silicon

t



CCD.ppt P. Denes

Radiation DamageRadiation Damage

� Ionization damage
� Charge trapping in gate oxide

� Threshold shift
� Damage at the SiO2 – Si 

interface
� Surface dark current
� Surface mobility loss

� CCDs have thick oxides

⊕

⊕
⊕

⊕

⊕

⊕
⊕
⊕



CCD.ppt P. Denes

Flux for 1 Rad in gate oxideFlux for 1 Rad in gate oxide
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LBNL CCDLBNL CCD

� CCD on high-resistivity, fully 
depleted silicon
� No thinning needed
� Good red (and blue) response
� No field free regions for 

diffusion ⇒ good PSF
� Bias depletes substrate 

independently of clock voltages
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PSF – measured with pinholes at UCO LickPSF – measured with pinholes at UCO Lick
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1st x-ray images in LBNL CCD1st x-ray images in LBNL CCD

3,512 x 3,512 x 10.5µm pixel CCD
200 µm thick

Cu anode, 140K, 70 kHz

5 µm slit in semi-transparent
stainless steel

Spectrum of Row 1200
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650 µm thick CCD650 µm thick CCD

55Fe Kα and Kβ. Resolution ~ 126 eV at 5.6 keV

Be window
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Back-illuminated CCDs for low-energy e−Back-illuminated CCDs for low-energy e−

� Window should be thin enough 
to allow electrons to penetrate

� Device should be thick enough 
to avoid radiation damage

� Excellent S/N (3.6 eV/e-h pair)
� Well depth

Thin entrance windows also good for electrons
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10 keV e−10 keV e−

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9 10
EDeposited [keV]

10 nm

Backscattered

100Å (typ.)



CCD.ppt P. Denes

δ-doping ~15 Åδ-doping ~15 Å

Nikzad et al SPIE 97
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CCDs are wonderfulCCDs are wonderful

But they are slow

ADC

� Parallel exposure
� Serial readout

� Vertical clock
� Horizontal clock
� External, high resolution ADC
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EasyEasy

Now it gets more difficult
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Increase ADC speedIncrease ADC speed

NV, NH = # H, V pixels
BV, BH = H, V binning
TV, TH = H, V shift time
Nport = # ports
TCONV = total conversion 

time including reset, 
summing well, …

ADCADC

ADCADC⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++= CONV

portH

H
HH

V
V

V
f T

NB
NTB

B
TNT 1

2

top+bottom readout



CCD.ppt P. Denes

For exampleFor example

� Dalsa – FT50M
� 1024 x 1024 x 5.6 µm pixel
� Frame transfer / 2 ports
� 100 fps = 100 MPix/s
� 11.1 bits [67 dB] at 30/60 fps
� 10.1 bits [61 dB] at 50/100 fps

Increase readout/ADC speed

S/F Limitations

RST VDD

Out

VDD

FD
CL

gm~W/L ⇑
CG~WL   ⇓
τ~CL/gm  ⇓

RST VDD

Out

VDD

FD
CL

VDD
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LimitationsLimitations

� Noise contribution from MR (reset switch) removed by CDS 
(correlated double sampling – measure VR and VR + VS)

� Noise contributions from MS (source follower)
� Thermal noise 

� 1/f noise

� Noise from current source

Hϕ1 Hϕ2 Hϕ3
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Add more portsAdd more ports

� Reset and output 
transistors need 
room

� Want to minimize CFD

� Need space for the 
output stage!

Hϕ1Hϕ2Hϕ3

RSTVDD

OSWOTG

VDD

FD

RST
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One way to gain spaceOne way to gain space

MIT Lincoln Labs multi-port CCD
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For exampleFor example

� Fairchild 456
� 512 x 512 x 8.7 µm pixel
� Interline transfer / 32 ports
� 1000 fps = 250 MPix/s

� On-chip current sources for 3-stage 
output ⇒ 2.5 Watts

At some point, adding more ADC ports becomes a connection 
nightmare Æ integrated circuit solution needed.
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Fully column-parallelFully column-parallel
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� 1 ADC/column
� Bump bonding required
� No source-follower

� Example – developments for 
ILC Vertex Detector
� 50 MHz column readout
� 4-5 bits dynamic range

RAL et al.

Custom IC
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PrecedentPrecedent

� 1996 - SLD Vertex Detector
� 3 x 108 pixels
� 96 x 3.2 MPix x 20 µm CCD

Tomorrow – ATLAS Pixel
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(Almost) Column Parallel CCDs(Almost) Column Parallel CCDs

� Speed increased by NPORTS

� NH large enough to 
minimize the number of 
ADCs needed

� NH small enough to ensure 
fast readout

� Wire bonding still possible

Solution chosen
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Prototype – 480 x 480 x 30 µm pixelsPrototype – 480 x 480 x 30 µm pixels

� Constant area taper
� 10 pixels/SR

� 300 µm output 
pitch



CCD.ppt P. Denes

LBNL Fast CCD CameraLBNL Fast CCD Camera

� Goals:
� 200 MPix / s
� ≥ 14 bits (84 dB)

� Proof-of-concept
� LDRD (internal lab R&D)
� 30 µm pixels
� funding limited 480 x 480 

device slipped onto 4k 
CCD run

� custom readout IC

Prototype devices with
30 µm pixels

Metal strapped and not
(a)CP and 4-port
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CCD readout for the SNAP focal planeCCD readout for the SNAP focal plane

� SNAP requirements
� 16 bit dynamic range at 100 kHz
� 4 channels per chip
� low power
� space qualified

� Fast CCD (benefit from SNAP 
development)
� 16 channels per chip
� ADC pitch < 300 µm (to match 300 

µm output pitch) – actual: 235 µm
� 10 x speed ⇒ DR = 16/√10 bits

� Structure of circuit lends itself to 
future designs
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Floating Point ReadoutFloating Point Readout
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Digitize cycleDigitize cycle
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CCD Readout IC (“CRIC”)CCD Readout IC (“CRIC”)

4 x 13 Bit 
ADC

Voltage 
Reference

Logic

I/O

4 x
Preamp

Multislope
CDS

0.25 µm CMOS
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Full-scale signal in CRICFull-scale signal in CRIC

Measured Performance
� 3.6 µV/ADU ~ 1 e−

� Noise ~2.2 e− 300
� Noise ~1.9 e− 140K
� INL <2 bits max
� DNL << 1 bit
� Crosstalk < 1 ADU 

(one channel at zero, 
adjacent full scale)

� 15 mW/channel

On spec

Reset level integration

Signal integration

Data digitized
here

Gain 2 indicator bit

Gain 1 indicator bit
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FCCD PlanFCCD Plan

� Complete 
demonstrator camera
� LBNL thick CCD

� visible light + phosphor
� x-rays
� low energy electrons

� Commercializeable

� Phosphor development
16xADC

CCD

16xADC 16xADC

16xADC 16xADC 16xADC
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In general – what is needed to make CCDs fast?In general – what is needed to make CCDs fast?

� Poly gates are resistive 
(1000 x metal)

� To 1st order, distributed 
network of RPOLYxCOVERALP
dominates speed of 
clock propagation

� Metal strapping needed 
for high speed
� opaque for front 

illumination
� topological 

considerations
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Speed LimitSpeed Limit

Ultimate limitation is CTI (1 – CTE) vs speed
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Conclusions (1)Conclusions (1)

� Conflicting process requirements for CCD and CMOS imagers ⇒ both
will fill important roles
� Could combine the two, but there is no commercial driver
� Lab-foundry developments of CMOS on CCD, but …

� CCDs will continue to be the best for max(area, pixels, dynamic range, 
speed)
� Our community can push that

� Development area #1 – speed (combination of micro-electronics and 
CCD optimization)

� Development area #2 – why just silicon?
� Ge CCD – spectroscopy, x-rays

� Improving CCDs and the ubiquitous detector maximizes dBang/d$ 
� Provided it is done in such a way as to benefit the whole community
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Conclusions (2)Conclusions (2)

� A straightforward sophisticated detector (a ‘simple’ custom 
sensor with a ‘simple’ custom readout chip) ~ 8-10 FTEyr
and needs 2-3 years to complete
� Specific detector developments should be run as a project
� R&D base support is needed at a relatively modest level

� Projects need to address community access
� Commercialize if possible – often difficult
� If labs build and support instruments then

�Need a way to support that ($)
�Other labs need to sign up early – 10 at once ≠ one 10 times

(not just for CCDs – more general)
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