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Earth’s lower mantle (simplified)
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Motivation for electronic structure measurements of
lron in magnesium-silicate perovskite

The physical and chemical properties of Mg-silicate perovskite largely
control the properties of the bulk mantle

Iron is present at concentration levels of only about 2 atomic% (or less)
In Mg-silicate perovskite

Electronic charge states of iron (e.g., Fe2* and Fe3*) and spin state (high-
spin or low-spin) may affect:

» Charge balance and equilibrium defect concentration

e Presence of metallic iron

* Rheology, solubility of volatiles, partitioning of major and trace
elements, and transport properties

» Elasticity



Outline of presentation

d Motivation for studying the electronic structure of iron-
bearing magnesium silicate perovskite

1 Experimental details:
O Sample description
d Synchrotron MOossbauer spectroscopy (SMS)

d SMS Results & Discussion for (Mg,Fe)SiO5; — perovskite
 Iron valence fractions
d Quadrupole splitting (lattice distortion)
d Spin crossover

d Conclusions & Future Directions



Description of (Mg,Fe)SiO3; perovskite
samples and preparation

Synthesis: Pv10 experiments to 75 GPa:
SynthEtiC (Mgo_95Feo_o5)Si03 (PVOS)  Dilute! (...2 atomic %Fe)
and (Mgo.00F€0.10)S105 (PVv10) « small sample: ~40x50x50 pm?3
orthopyroxene structure with 92%
>’Fe enriched PvO5 experiments to 120 GPa

_ _ _  Dilute! (~1 atomic %Fe)
Re capsules in a multi-anvil at 26 . small sample: ~10x50x50 pms3

GPa and 1873 K (Pv05) and 1923 K
(Pv10) (see Fei et al. 1994).




Synchrotron Mossbauer spectroscopy
(schematic set-up)
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Synchrotron Mdssbauer Spectroscopy
Set-up at sector 3-ID

X-ray bandwidths:

e 2.2 meV, Pv10 (Toellner 2000)
* 1.0 meV, Pv05

KB mirrors: 6 x 6 um? at FWHM
* higher flux (10° ph/s)
* Increased sensitivity
 Effects of pressure gradients reduced

Nuclear Resonant X-ray Scattering
Beamline 3-ID, APS

Spectral flux density

(2x1016 ph/s/eV/mm?) is up to 10
orders of magnitude higher than

14.4125 keV resonance conventional MBS

of the >’Fe isotope _ _
Permits high P-T measurements

in a reasonable time



Origin of the time oscillations for silicate perovskite

e SR excites resonances

simultaneously
A
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Time spectra for (Mgo.gsFe0.05)SIO3 perovskite
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(Jackson et al. Am.Min., 90, 2005)



Iron valence fraction results to 120 GPa
for (Mg Fe)SiOj; perovskite

(Mgg.95F€0.05)SiO3
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Pressure dependence on quadrupole splitting
for (Mg Fe)SiO3; perovskite

(Mgg.95F€0.05)SiO3
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Fe3+ relative to Fe2+

Pressure dependence on the isomer shift
and spin crossover
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Comparison with recent observations of spin crossovers in
perovskite under lower mantle pressures

X-ray Emission Spectroscopy (XES) results:

(Mg,Fe)SiO5; perovskite

Pressure-induced “partial” spin-pairing transition at 70 GPa and
“full” transition at 120 GPa

(Badro et al. Science, 2004)

(Mg,Fe)(Si,Al)O3 and (Mg,Fe)SiO3; perovskites
Spin-pairing transition is gradual to 100 GPa. Residual
magnetism at 100 GPa

(Li et al. PNAS, 2004)

perovskite contains different charge states, Fe2* and Fe3*

Synchrotron Méssbauer Spectroscopy (SMS) results:
(Mg,Fe)SiO; perovskites
Pressure-induced spin-pairing crossover in Fe3* component
completed ~70 GPa
(this study — Jackson et al. Am Min, 2005)




Conclusions and Future Directions

U First in-situ measurements of the charge states of iron-bearing MgSiO;
perovskite at high-pressure

Q Little to no variation in Fe3* content to 120 GPa

O Spin crossover in Fed* is gradual and completed around 70 GPa
0 Comparison with XES measurements

U Inconsistent with sharp transition described in Badro et al. (2004)

O Gradual trend is in agreement with Li et al. (2004), but discrepancies

still exist in terms of behavior of individual charge states.

Some future directions:

0 combining SMS, XES, and XRD

O ferropericlase, (Al,Fe)-MgSiO; perovskite, and post-perovskite at
high pressures & temperatures

O Electronic structure of upper mantle minerals at high P-T

4 Very challenging!
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