Iron valence, lattice distortion, and spin crossover in (Mg,Fe)SiO₃ perovskite:

A synchrotron Mössbauer spectroscopy study to 120 GPa

Jennifer M. Jackson

Department of Geology, University of Illinois Urbana-Champaign, U.S.A.

Acknowledgments

Wolfgang Sturhahn: APS Guoyin Shen: GSE-CARS, Univ. of Chicago Jiyong Zhao: APS Michael Hu: HP-CAT, (CIW) Daniel Errandonea: HP-CAT, (CIW) Jay Bass: Dept. of Geology, University of Illinois at U-C Yingwei Fei: Carnegie Institute of Washington D.C.

Jie Li: Dept. of Geology, University of Illinois at U-C J.-F. Lin: Carnegie Institute of Washington D.C. Tom Toellner: APS Ercan Alp: APS

Department of Energy National Science Foundation COMPRES

Earth's lower mantle (simplified)

Motivation for electronic structure measurements of *Iron* in magnesium-silicate perovskite

The physical and chemical properties of Mg-silicate perovskite largely control the properties of the bulk mantle

Iron is present at concentration levels of only about 2 atomic% (or less) in Mg-silicate perovskite

Electronic charge states of iron (e.g., Fe²⁺ and Fe³⁺) and spin state (highspin or low-spin) may affect:

- Charge balance and equilibrium defect concentration
- Presence of metallic iron
- Rheology, solubility of volatiles, partitioning of major and trace elements, and transport properties
- Elasticity

Outline of presentation

- Motivation for studying the electronic structure of ironbearing magnesium silicate perovskite
- Experimental details:
 - Sample description
 - □ Synchrotron Mössbauer spectroscopy (SMS)
- □ SMS Results & Discussion for (Mg,Fe)SiO₃ perovskite
 - □ Iron valence fractions
 - **Quadrupole splitting (lattice distortion)**
 - Spin crossover
- Conclusions & Future Directions

Description of (Mg,Fe)SiO₃ perovskite samples and preparation

Synthesis:

Synthetic $(Mg_{0.95}Fe_{0.05})SiO_3$ (Pv05) and $(Mg_{0.90}Fe_{0.10})SiO_3$ (Pv10) orthopyroxene structure with 92% ⁵⁷Fe enriched

Re capsules in a multi-anvil at 26 GPa and 1873 K (Pv05) and 1923 K (Pv10) (see Fei et al. 1994).

Pv10 experiments to 75 GPa:

- Dilute! (~2 atomic %Fe)
- small sample: ~40x50x50 μm³

Pv05 experiments to 120 GPa

- Dilute! (~1 atomic %Fe)
- small sample: ~10x50x50 μm^3

Powder XRD confirmed the perovskite structure (*Pbnm*)

Synchrotron Mössbauer spectroscopy (schematic set-up)

Synchrotron Mössbauer Spectroscopy Set-up at sector 3-ID

Nuclear Resonant X-ray Scattering Beamline 3-ID, APS

14.4125 keV resonance of the ⁵⁷Fe isotope

X-ray bandwidths:

- 2.2 meV, Pv10 (Toellner 2000)
- 1.0 meV, Pv05

KB mirrors: 6 x 6 μ m² at FWHM

- higher flux (10⁹ ph/s)
- Increased sensitivity
- Effects of pressure gradients reduced

Spectral flux density (2x10¹⁶ ph/s/eV/mm²) is up to **10** orders of magnitude higher than conventional MBS

Permits high P-T measurements in a reasonable time

Origin of the time oscillations for silicate perovskite

<u>quadrupole splitting (Δ):</u> A splitting of the excited

nuclear state caused by an electric field gradient

isomer shift (IS):

A shift of the nuclear states caused by the electron density in the nuclear volume

Time spectra for (Mg_{0.95}Fe_{0.05})SiO₃ perovskite

Iron valence fraction results to 120 GPa for (Mg,Fe)SiO₃ perovskite

metallic iron was not detected

Pressure dependence on quadrupole splitting for (Mg,Fe)SiO₃ perovskite

Iron site occupancy and lattice distortion

Pressure dependence on the isomer shift and spin crossover

Comparison with recent observations of spin crossovers in perovskite under lower mantle pressures

X-ray Emission Spectroscopy (XES) results:

(Mg,Fe)SiO₃ perovskite Pressure-induced "partial" spin-pairing transition at 70 GPa and "full" transition at 120 GPa (Badro et al. Science, 2004)

(Mg,Fe)(Si,Al)O₃ and (Mg,Fe)SiO₃ perovskites Spin-pairing transition is gradual to 100 GPa. Residual magnetism at 100 GPa (Li et al. PNAS, 2004)

perovskite contains different charge states, Fe²⁺ and Fe³⁺

Synchrotron Mössbauer Spectroscopy (SMS) results:

(Mg,Fe)SiO₃ perovskites Pressure-induced spin-pairing crossover in Fe³⁺ component completed ~70 GPa (this study – Jackson et al. Am Min, 2005)

Conclusions and Future Directions

□ First *in-situ* measurements of the charge states of iron-bearing MgSiO₃ perovskite at high-pressure

- □ Little to no variation in Fe³⁺ content to 120 GPa
- □ Spin crossover in Fe³⁺ is gradual and completed around 70 GPa

Comparison with XES measurements

□ Inconsistent with sharp transition described in Badro et al. (2004)

- Gradual trend is in agreement with Li et al. (2004), but discrepancies
- still exist in terms of behavior of individual charge states.

Some future directions:

- □ combining SMS, XES, and XRD
- □ ferropericlase, (AI,Fe)-MgSiO₃ perovskite, and post-perovskite at

high pressures & temperatures

- □ Electronic structure of upper mantle minerals at high P-T
- Very challenging!