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RF Deflection Followed by . . .
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RF deflection undulator

e-
x-rays

β
RF voltage:  4 MV
RF freq:  8 × 352 MHz = 2.8 GHz

Gives deflection gradient ± 380 µrad / σ
where σ   = 40 ps is r.m.s. bunch length

For x-rays at 30 m, β = ± 46° , 
1 σ   vertically dispersed by 11.6 mm
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. . . Pulse Compression Optics

- x-ray tilt-rotation by asymmetric crystals
- undulator radiation following RF bunch deflection
- ps compression concept using Bragg geometry and mirrors
- flux and tunability: optimization over 5 - 40 keV
- geometrical effects
- mirror issues
- Laue geometry and bent crystals

Zholents, et al., NIM A425, 385-389 (1999)



RF Deflection Followed by Tilt - Rotation by Asymmetric Crystals

Rotation

Beam size magnification

Angular divergence change

tan β sin (θ + α) - 2 sin θ sin α

sin (θ - α)
tan β’  =

1 / | b |
sin (α - θ)

sin (θ + α)
b =

∆θ - b ∆θ

B

RF deflection undulator

e-
x-rays

β

β’

β β ≠ β’

θ

α
Bragg geometry   - θ < α < θ

Laue geometry       θ < α < 180° - θ

RF voltage:  4 MV
RF freq:  8 × 352 MHz = 2.8 GHz

Gives deflection gradient ± 380 µrad / σ
where σ   = 40 ps is r.m.s. bunch length

For x-rays at 30 m, β = ± 46° , 
1 σ   vertically dispersed by 11.6 mm
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Betatron Oscillations Enable ...

Example: 3 straight sections, 4 IDs, 2 BMs

undulator

deflecting cavity

undulator
cavity

dipole beamline

... Multiple Picosecond Beamlines Inside 2 Deflecting Cavities



UA Central Cone - No RF Deflection (or Single Slice with Deflection)

10 keV at 30 m



Undulator Radiation with RF Deflection - 10 keV at 30 m

σ    =  245 µm      σ    =  12.3 µrad

σ    =  12.3 µm     σ    =   2.0 µrad

             σ   / E  =  0.001

x

y

x’
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Slits Only - No Optics Compression

FWHM = 1.8 ps



Tilt - Rotation, 10 keV, Bragg Geometry

Si(111) Si(220)

α (deg) α (deg)

   β’
(deg)

1 / |b|

β = - 80°

β = + 80°

β = + 10°

0°



Tilt - Rotation, 10 keV, Bragg Geometry

Si(400) Si(444)

α (deg) α (deg)

   β’
(deg)

1 / |b|

β = - 80°

β = + 80°

β = + 20°

0°



Pulse Compression Concept: 10 keV and Si(400) Example

asym Si(400)
θ = 27.2°
α = -14.5°
-1/b = 3.0

sym Si(400)

collimating mirror

focusing mirror

source to optics: 30  m

24 mm vertical
slit

1st 20mm aperture

Throughput relative to symm, double Si(111) 
taking full, normal central cone is:
             0.70 x 0.17 x √3 = 0.21

symm double Si(400) bw
relative to Si(111)

asym bw increase

bandwidth = 0.4 eV

1.9 ps FWHM

 30  m  to focus



Optics Compression Pulse Widths



Pulse Compression Concept: 10 keV and Si(400) Example

asym Si(400)
θ = 27.2°
α = -14.5°
-1/b = 3.0

sym Si(400)

collimating mirror

focusing mirror

source to optics: 30  m

24 mm vertical
slit

1st 20mm aperture

Throughput relative to symm, double Si(111) 
taking full, normal central cone is:
             0.70 x 0.17 x √3 = 0.21

symm double Si(400) bw
relative to Si(111)

asym bw increase

bandwidth = 0.4 eV

 30  m  to focus

Picosecond Time-Resolution Without Picosecond Pulses

symm mono

linear PSD

sample



Throughput Optimization of Pulse Compression Monochromators

Optimization assuming:
- 24 mm first aperture
- 200 mm long crystals
- 100 mm aperture after crystals 
   (before focusing mirror)
- 100% mirror reflectivites

Example - Analysis of Si(111)
at 10 keV
 
θ = 11.403°         

α1 = -8.4°         α2 = .3°
-1/b1 = 6.5     -1/b2 = 0.95

crystal system’s vertical aperture = 24 mm x 0.44 x 0.60 = 6.3 mm = 0.54 x (11.6 mm)

1/√(2π)     exp(-1/2  y   ) dy  = 0.21

.21 x √(6.5) = 0.54 throughput

bandwidth = 3.7 eV

0.54 / 2

- 0.54 / 2

2
⌠

⌡

E (keV)

flux

Si(111)

Si(220)
Si(400)

slit-only transmission for 1.5 - 2 ps

Si(311)



How Near-Optimized Can One Be with Fixed First-Crystal Asymmetry?

Fix 1st crystal asymmetry to 

α1 = - 6.0 °

Second crystal asymmetry 
α2 varies to satisfy pulse 
compression condition

E (keV)

∆E/E

Si(111)

Si(220)

Si(400)

E (keV)

Si(111)

Si(220)
Si(400)

1.5 - 2 ps from slitting only

flux
optimized

fixed α1= -6 °

  α2
(deg.)

E (keV)

Si(111)

Si(220)

Si(400)



How Near-Optimized Can One Be with Fixed First-Crystal Asymmetry?

Fix 1st crystal asymmetry to 

α1 = - 6.0 °

Second crystal asymmetry 
α2 varies to satisfy pulse 
compression condition

E (keV)

Si(111)

Si(220)
Si(400)

1.5 - 2 ps from slitting only

flux
optimized

fixed α1= -6 °

  α2
(deg.)

E (keV)

Si(111)

Si(220)

Si(400)

- αo < α2 < αo

αo

Continuously Tunable 2nd 
Crystal Asymmetry



Tunable Asymmetry Effects

E (keV)

Si(111)

Si(220)

Si(400)

E (keV)

     ∆ t 
     for 
∆ x = 1 mm

     (fs)

Si(111)

Si(220)

Si(400)
     ∆ y 
     for 
∆ x = 1 mm

     (mm)



Vertical Spot Size Due to Asymmetric Crystals

Single reflection
δ θ ’ = δ θ (1 + b)

Double reflection
δ θ ’ = δ θ (1 - b1 b2)

Dumond
representation

δ θ

δ θ ’

δ θ ’

f = 30 m

Si(111)

Si(220)

Si(400)

vertical 
  spot
   size

  (mm)

E (keV)



2nd Sagittal Mirror Length and Reflectivity / Coating

L =    L   +  L

   = 
h h

θ
+

8 R θ

s

1 2

m
2

h    <   √ ( L -            ) 8 R θs

h

θ
m

2 m
2 mm E (keV)

vertical
beam size
before 2nd
mirror

  (mm)

Si(111) Si(220) Si(400)

θ (mrad)

max 
beam size
allowed

(mm)

R = 228 mm

R = 120 mm

R = 186 mm

R = 162 mm
Rh
3.8 mr

E (keV)

Rh
3.1 mr

Pt
2 mr

Pt
2.7 mr

3 A roughness



Throughput Including Mirror Reflectivities

E (keV)

flux

Si(111)

Si(220)
Si(400)

optimized, non-tunable
quasi-optimized, tunable

E (keV)

flux
Si(111)

Si(220)Si(400)

optimized, non-tunable
quasi-optimized, tunable

2 m long second mirror

1 m long second mirror

0.5 mm slit-only trans for 1.5 - 2 ps



Isochronicity of Sagittal Mirrors

Paths are isochronous, from Fermat’s principle of stationary (least) time for aberration-free 
(parabolic) profile. 

For cylindrical profile we have the following:

longer by               ( 1 - cos ( arcsin                     ))
R

2 sin θ

h   / 2s

R / 2 sin θ

longer by   R ( 1 - cos ( arcsin           )) sin 2θ
sh

2 R

For   h    = 100 mm, θ = 2 mrad, R = 120 mm, 

these lengths are 41.7 µm and 43.7 µm, 

difference of 2 µm or 7 fs

s



Tilt - Rotation, 10 keV, Si(220), Laue Geometry

   β’
(deg)

α (deg)

β = - 80°

β = + 80°

β = + 20°

θ (µrad)

asym Laue α = 135°
150 µm thick

symm Bragg



Minimizing Energy Spread and Focusing Without Mirrors

Laue-Bragg geometry with bent crystals in nested Rowland conditions



Summary

- Implementing compression optics to get < 2 ps seems possible.

- Compared to slitting alone, compression optics throughput enhancement would 
  be 15- to 2-fold over 5 - 30 keV. 

- Flux at ∼10 keV would be about an order of magnitude less than "what you are used 
  to"  (i.e., flux delivered by ordinary Si(111) monochromator in central radiation cone). 

- A given optics system could be tuned/scanned in energy over roughly 10 keV wide 
  ranges.

- Main "loose end" has to do with mirrors and focusing the transversely large, time-
  compressed beam to a reasonable (∼mm) spot size. Simulations in progress.

- Microfocusing does not seem possible with compression, but can be done with 
  just slitting alone.

- Remember: RF-deflection destroys the source vertical brilliance, resulting in large 
  vertical divergence. One might have to do scattering experiments in the horizontal 
  plane.




