# Picosecond X-Ray Pulse Compression Optics Following RF Bunch Deflection 

S. D. Shastri, R. J. Dejus, L. Assoufid<br>APS<br>Argonne National Laboratory

## RF Deflection Followed by ...



RF voltage: 4 MV
RF freq: $8 \times 352 \mathrm{MHz}=2.8 \mathrm{GHz}$
Gives deflection gradient $\pm 380 \mu \mathrm{rad} / \sigma_{\mathrm{t}}$ where $\sigma_{t}=40 \mathrm{ps}$ is r.m.s. bunch length

For x-rays at $30 \mathrm{~m}, \beta= \pm 46^{\circ}$,
$1 \sigma_{t}$ vertically dispersed by 11.6 mm
Zholents, et al., NIM A425, 385-389 (1999)
... Pulse Compression Optics

- x-ray tilt-rotation by asymmetric crystals
- undulator radiation following RF bunch deflection
- ps compression concept using Bragg geometry and mirrors
- flux and tunability: optimization over $5-40 \mathrm{keV}$
- geometrical effects
- mirror issues
- Laue geometry and bent crystals


## RF Deflection Followed by Tilt - Rotation by Asymmetric Crystals



RF voltage: 4 MV
RF freq: $8 \times 352 \mathrm{MHz}=2.8 \mathrm{GHz}$
Gives deflection gradient $\pm 380 \mu \mathrm{rad} / \sigma_{\mathrm{t}}$ where $\sigma_{t}=40 \mathrm{ps}$ is r.m.s. bunch length

For $x$-rays at $30 \mathrm{~m}, \beta= \pm 46^{\circ}$,
$1 \sigma_{\mathrm{t}}$ vertically dispersed by 11.6 mm

$$
\begin{array}{ll}
\text { Bragg geometry } & -\theta<\alpha<\theta \\
\text { Laue geometry } & \theta<\alpha<180^{\circ}-\theta
\end{array}
$$

Rotation

$$
\tan \beta^{\prime}=\frac{\tan \beta \sin (\theta+\alpha)-2 \sin \theta \sin \alpha}{\sin (\theta-\alpha)}
$$

Beam size magnification

$$
1 /|b|
$$

$$
b=\frac{\sin (\theta+\alpha)}{\sin (\alpha-\theta)}
$$

Angular divergence change
$\Delta \theta \longrightarrow-\mathrm{b} \Delta \theta$

## Betatron Oscillations Enable ...


... Multiple Picosecond Beamlines Inside 2 Deflecting Cavities

Example: 3 straight sections, 4 IDs, 2 BMs


UA Central Cone - No RF Deflection (or Single Slice with Deflection)


Undulator Radiation with RF Deflection - 10 keV at 30 m




$$
\begin{array}{cl}
\sigma_{x}=245 \mu \mathrm{~m} & \sigma_{x^{\prime}}=12.3 \mu \mathrm{rad} \\
\sigma_{y}=12.3 \mu \mathrm{~m} & \sigma_{y^{\prime}}=2.0 \mu \mathrm{rad} \\
\sigma_{E} / E=0.001
\end{array}
$$

## Slits Only - No Optics Compression




Tilt - Rotation, 10 keV , Bragg Geometry

Si(111)



Si(220)



Tilt - Rotation, 10 keV , Bragg Geometry

Si(400)





## Pulse Compression Concept: 10 keV and $\mathrm{Si}(400)$ Example





## Optics Compression Pulse Widths



## Pulse Compression Concept: 10 keV and $\mathrm{Si}(400)$ Example



Picosecond Time-Resolution Without Picosecond Pulses


## Throughput Optimization of Pulse Compression Monochromators

Optimization assuming:

- 24 mm first aperture
- 200 mm long crystals
- 100 mm aperture after crystals (before focusing mirror)
- 100\% mirror reflectivites

Example - Analysis of $\mathrm{Si}(111)$
at 10 keV
$\theta=11.403^{\circ}$
$\alpha 1=-8.4^{\circ} \quad \alpha 2=.3^{\circ}$
$-1 / b 1=6.5 \quad-1 / b 2=0.95$

crystal system's vertical aperture $=24 \mathrm{~mm} \times 0.44 \times 0.60=6.3 \mathrm{~mm}=0.54 \times(11.6 \mathrm{~mm})$
$1 / \sqrt{ }(2 \pi) \int_{-0.54 / 2}^{0.54 / 2} \exp \left(-1 / 2^{2} y \quad\right) d y=0.21$
$.21 \times \sqrt{ }(6.5)=0.54$ throughput
bandwidth $=3.7 \mathrm{eV}$

## How Near-Optimized Can One Be with Fixed First-Crystal Asymmetry?

Fix 1st crystal asymmetry to $\alpha 1=-6.0^{\circ}$

Second crystal asymmetry $\alpha 2$ varies to satisfy pulse compression condition


## How Near-Optimized Can One Be with Fixed First-Crystal Asymmetry?

Fix 1st crystal asymmetry to $\alpha 1=-6.0^{\circ}$

Second crystal asymmetry $\alpha 2$ varies to satisfy pulse compression condition

Continuously Tunable 2nd Crystal Asymmetry




Tunable Asymmetry Effects



## 2nd Sagittal Mirror Length and Reflectivity / Coating

$$
L=L_{1}+L_{2}
$$

$$
=\frac{\mathrm{h}_{\mathrm{m}}}{\theta}+\frac{\mathrm{h}_{\mathrm{s}}^{2}}{8 \mathrm{R} \theta}
$$

$$
\mathrm{h}_{\mathrm{s}}<\sqrt{\left(\mathrm{L}-\frac{\mathrm{h}_{\mathrm{m}}}{\theta}\right) 8 R \theta}
$$

$$
2 \mathrm{~m}
$$





## Throughput Including Mirror Reflectivities

0.5 mm slit-only trans for $1.5-2 \mathrm{ps}$

1 m long second mirror
2 m long second mirror


## Isochronicity of Sagittal Mirrors

Paths are isochronous, from Fermat's principle of stationary (least) time for aberration-free (parabolic) profile.

For cylindrical profile we have the following:


For $\mathrm{h}_{\mathrm{s}}=100 \mathrm{~mm}, \theta=2 \mathrm{mrad}, \mathrm{R}=120 \mathrm{~mm}$,
these lengths are $41.7 \mu \mathrm{~m}$ and $43.7 \mu \mathrm{~m}$,
difference of $2 \mu \mathrm{~m}$ or 7 fs

Tilt - Rotation, $10 \mathrm{keV}, \mathrm{Si}(220)$, Laue Geometry





Minimizing Energy Spread and Focusing Without Mirrors


Laue-Bragg geometry with bent crystals in nested Rowland conditions

## Summary

- Implementing compression optics to get < 2 ps seems possible.
- Compared to slitting alone, compression optics throughput enhancement would be 15- to 2 -fold over 5-30 keV.
- Flux at $\sim 10 \mathrm{keV}$ would be about an order of magnitude less than "what you are used to" (i.e., flux delivered by ordinary $\mathrm{Si}(111)$ monochromator in central radiation cone).
- A given optics system could be tuned/scanned in energy over roughly 10 keV wide ranges.
- Main "loose end" has to do with mirrors and focusing the transversely large, timecompressed beam to a reasonable ( $\sim \mathrm{mm}$ ) spot size. Simulations in progress.
- Microfocusing does not seem possible with compression, but can be done with just slitting alone.
- Remember: RF-deflection destroys the source vertical brilliance, resulting in large vertical divergence. One might have to do scattering experiments in the horizontal plane.

