Picosecond X-Ray Pulse Compression Optics Following RF Bunch Deflection

S. D. Shastri, R. J. Dejus, L. Assoufid

APS Argonne National Laboratory

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government

RF Deflection Followed by ...

Zholents, et al., NIM A425, 385-389 (1999)

RF voltage: 4 MV RF freq: 8×352 MHz = 2.8 GHz

Gives deflection gradient \pm 380 μrad / σ_t where σ_t = 40 ps is r.m.s. bunch length

For x-rays at 30 m, $\beta = \pm 46^{\circ}$, 1 σ_t vertically dispersed by 11.6 mm

... Pulse Compression Optics

- x-ray tilt-rotation by asymmetric crystals
- undulator radiation following RF bunch deflection
- ps compression concept using Bragg geometry and mirrors
- flux and tunability: optimization over 5 40 keV
- geometrical effects
- mirror issues
- Laue geometry and bent crystals

RF Deflection Followed by Tilt - Rotation by Asymmetric Crystals

Betatron Oscillations Enable ...

... Multiple Picosecond Beamlines Inside 2 Deflecting Cavities

Example: 3 straight sections, 4 IDs, 2 BMs

UA Central Cone - No RF Deflection (or Single Slice with Deflection)

Undulator Radiation with RF Deflection - 10 keV at 30 m

Slits Only - No Optics Compression

Pulse Compression Concept: 10 keV and Si(400) Example

Optics Compression Pulse Widths

Pulse Compression Concept: 10 keV and Si(400) Example

Picosecond Time-Resolution Without Picosecond Pulses

Throughput Optimization of Pulse Compression Monochromators

crystal system's vertical aperture = 24 mm x 0.44 x 0.60 = 6.3 mm = 0.54 x (11.6 mm) $1/\sqrt{(2\pi)} \int_{-0.54/2}^{0.54/2} \exp(-1/2^2 y) dy = 0.21$

.21 x $\sqrt{(6.5)} = 0.54$ throughput

bandwidth = 3.7 eV

How Near-Optimized Can One Be with Fixed First-Crystal Asymmetry?

How Near-Optimized Can One Be with Fixed First-Crystal Asymmetry?

Tunable Asymmetry Effects

2nd Sagittal Mirror Length and Reflectivity / Coating

Throughput Including Mirror Reflectivities

Isochronicity of Sagittal Mirrors

Paths are isochronous, from Fermat's principle of stationary (least) time for aberration-free (parabolic) profile.

For cylindrical profile we have the following:

For $h_s = 100 \text{ mm}$, $\theta = 2 \text{ mrad}$, R = 120 mm,

these lengths are 41.7 μ m and 43.7 μ m,

difference of 2 μm or 7 fs

Tilt - Rotation, 10 keV, Si(220), Laue Geometry

Minimizing Energy Spread and Focusing Without Mirrors

Laue-Bragg geometry with bent crystals in nested Rowland conditions

Summary

- Implementing compression optics to get < 2 ps seems possible.
- Compared to slitting alone, compression optics throughput enhancement would be 15- to 2-fold over 5 30 keV.
- Flux at ~10 keV would be about an order of magnitude less than "what you are used to" (i.e., flux delivered by ordinary Si(111) monochromator in central radiation cone).
- A given optics system could be tuned/scanned in energy over roughly 10 keV wide ranges.
- Main "loose end" has to do with mirrors and focusing the transversely large, timecompressed beam to a reasonable (~mm) spot size. Simulations in progress.
- Microfocusing does not seem possible with compression, but can be done with just slitting alone.
- Remember: RF-deflection destroys the source vertical brilliance, resulting in large vertical divergence. One might have to do scattering experiments in the horizontal plane.