The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

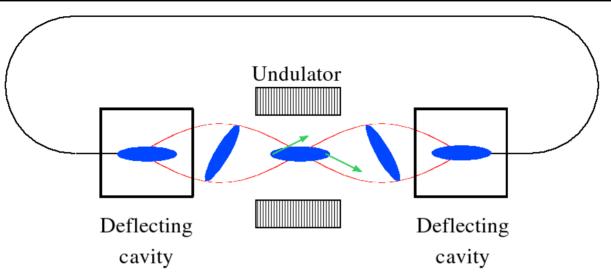
Report of Session I: Accelerator Physics Issues

Kwang-Je Kim

Workshop on Generation and Use of Short X-Ray Pulses at APS 2005 User's Meeting for the APS and CNM May 6, 2005

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

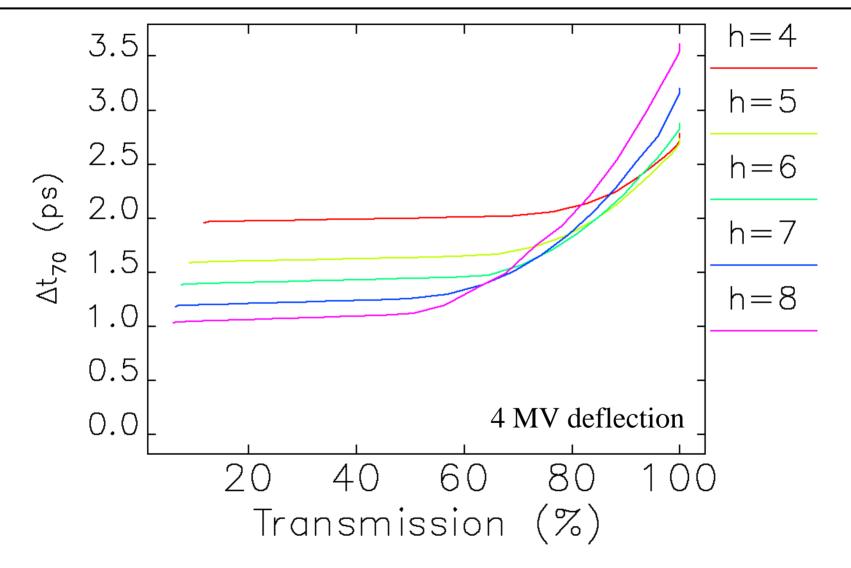

Session I: Accelerator Physics Issues

- APS Short Pulse Project...Kathy Harkay
- Accelerator Physics Aspects of Deflecting Cavity-Based X-Ray Compresion...Michael Borland
- Sextupole Optimization of Deflecting Cavity Scheme ...Vadim Sajaev
- Parameters for SCRF Deflecting Cavity...Geoff Waldschmidt
- Crab Cavity Operation at the KEKB-Factory
- Discussion

Crabbing scheme[†]

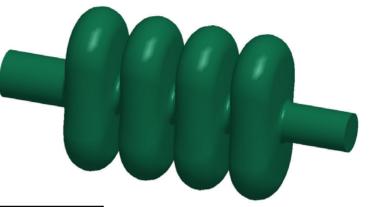
- Deflecting ("crab") cavity operating in TM_{110} mode; B_x kicks head and tail of bunch in opposite directions vertically
- Bunch evolution through lattice results in photons correlated with space or angle along the bunch length
- Ultrashort x-ray pulse either using slits or compression optics
- Second crab cavity at appropriate phase cancels kick; rest of storage ring nominally unaffected

[†]A. Zholents, P. Heimann, M. Zolotorev, J. Byrd, NIM A425 (1999)


Accelerator Physics Study

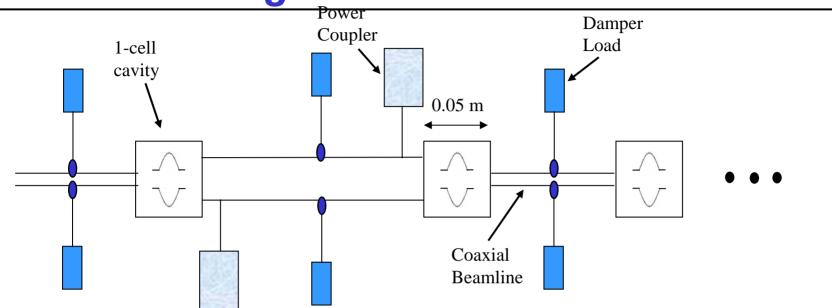
- Goal ~1 ps in crab insertion; no impact elsewhere (100 ps)
- Exhaustive study by M. Borland on parameter optimization in the presence of various degradation effects
 - Lifetime issues
 - RF curvature and frequency choice
 - Emittance degradation due to momentum compaction and chromaticity with energy spread
 - Sextupole nonlinearity
 - Lattice and cavity errors
- Emittance degradation due to sextupoles was found to be correctable with further optimization (V. Sajaev)
- With 2.8 GHz & 4 MV cavity, x-ray pulse length about 1 ps (70%, can be achieved with about 50% transmission
- Taking into account the x-ray optics (Shastri) \rightarrow < 1 ps, 20%

Compression Results for 10 keV, UA, Optics loss not included (M. Borland)


Discussion (What did we miss?)

- HOM, LOM Damping Design requirements need to be determined
- Beam loading transients need to be investigated
- Aperture (frequency choice)

4-Cell Squashed Structure at 2.8 GHz Modeled after KEKB-Factory



Frequency	2.81GHz
V _T	4 MV
Avg. Gradient	19 MV/m
Active Cavity Length	21.3 cm
R _T /Q	230 Ω
Q	3 x 10 ⁹
P _L @ 2 K	25 W
B _{MAX}	230 mT
Cell aspect ratio	1.8

APS 1-cell configuration

- Seven 1-cell cavities are required. One cryomodule would be used for all cavities.
- Cavities would require 0.053 meters / each or 0.37 meters / total.
- HOM and LOM power would be extracted from beamline and transmitted to remote loads.
- 2.1 meters available for seven power couplers, HOM / LOM pickups to loads, and rf separation to minimize coupling.

Discussion

• One-cell or four cell configuration?

- One cell simpler but need much more room
- May be we can create more room

Project schedule overview: SCRF

Year 1

- begin new construction to house cryostation and rf power system
- order/receive cryostation and cryomodules
- order rf power system
- design rf deflecting cavity / fabricate prototype

Year 2

- complete new construction
- install cryostation / assemble cryomodules
- receive rf power system; begin installation
- test cavity & component prototypes
- fabricate final cavity & components / test
- begin integration of cryomodules/cavities

Year 3

- complete rf power system installation
- complete rf cavity test
- complete integration/assembly cryomodules/rf cavities, test, and install
- commission

Science and K. Harkav

10

Discussion

• Can we compress 3 year ?

- Three year credible if RF design is done. Much design needs to be completed (beam dynamics, # of cells,..) before start
- KEK: conception 1995, project start 2004, installation 2006
- Take advantage of other labs' expertise—JLab, Cornell, KEK
- NC pulsed ?---Are there strong science cases? Practice with pulsed operation in SR
 - Prototype experiment NC pulsed using injector linac (400 MeV)?
 - What pulse format will be needed?

Normal or Superconducting?

• Normal conducting

- Pulsed mode
- Flexibility but low average flux
- Stability concern
- Fast implementation

Superconducting

- CW operation \rightarrow High average flux
- Operating mode cannot be changed rapidly
- Need development time
- A few SCRF and a few NC sections, starting with 1 nC section ?

12

Discussion& Conclusions

