

APS Short Pulse Project

Katherine Harkay

APS/CNM 2005 Users Meeting Workshop 9: Generation and Use of Short X-ray Pulses at APS

May 6, 2005

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Feasibility study group

M. Borland	D. Mills
YC. Chae	S. Milton
G. Decker	E. Moog
R. Dejus	A. Nassiri
L. Emery	G. Pile
W. Guo	V. Sajaev
K. Harkay	S. Shastri
D. Horan	G. Waldschmidt
KJ. Kim	M. White
R. Kustom	B. Yang
Y. Li	A. Zholents, LBNL

2

Science drivers for ps x-rays

APS Strategic Planning Workshop (Aug 2004): Time Domain Science Using X-Ray Techniques

"...by far, the most exciting element of the workshop was exploring the possibility of shorter timescales at the APS, i.e., the generation of 1 ps x-ray pulses whilst retaining high-flux. This important time domain from 1 ps to 100 ps will provide a unique bridge for hard x-ray science between capabilities at current storage rings and future x-ray FELs."

Atomic and molecular dynamics, coherent/collective processes:

- Atomic and molecular physics
- Condensed matter physics
- Biophysics/macromolecular crystallography
- Chemistry

ce and

K. Harkay

Storage ring sources vs. FELs

2008: APS ~ps, 10¹³ ph/s (avg flux) (FY06 start assumed) 2008: LCLS <300 fs, 30 J/cm² (non-focused fluence) 2011: TESLA ~100 fs, 10¹⁹ W/cm² (focused intensity)

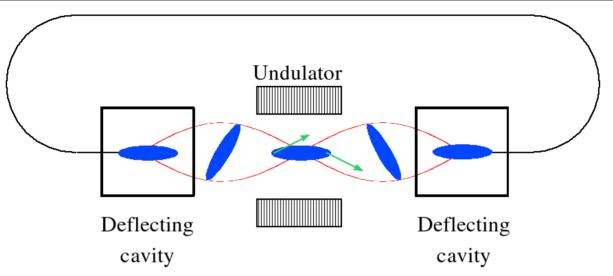
Storage ring "crabbed" sources delivering hard x-ray pulses down to ps range are complementary to future x-ray FELs

Storage rings can provide

- ~1 ps pulses
- Energy tunability
- Spectral stability
- Flux comparable to 100 ps
- High repetition rate

ce and

X-ray FELs can provide

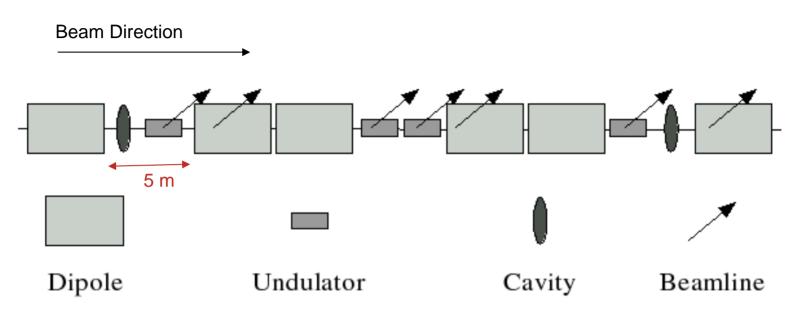

- fs pulses
- Ultrahigh peak power
- Ultrahigh brightness
- Lower avg. repetition rate
- Note: Femtoslicing not practical at APS (7 GeV) (A. Zholents)

K. Harkay Workshop on Short X-ray Pulses at APS

Crabbing scheme[†]

- Deflecting ("crab") cavity operating in TM₁₁₀ mode; B_x kicks head and tail of bunch in opposite directions vertically
- Bunch evolution through lattice results in photons correlated with vertical momentum along the bunch length
- Ultrashort x-ray pulse either using slits or compression optics
- Second crab cavity at appropriate phase cancels kick; rest of storage ring nominally unaffected

[†] A. Zholents, P. Heimann, M. Zolotorev, J. Byrd, NIM A425 (1999)


Feasibility study

• Beam dynamics issues (M. Borland, V. Sajaev, A. Zholents)

- Emittance growth/compensation
- Effects of errors
- Effects of impedance/HOMs (ongoing, AP group)
- Compression optics (S. Shastri, R. Dejus, D. Mills)
 - Compression throughput
 - Pulse duration and spot size
 - Energy tunability
- Superconducting crab cavity issues (G. Waldschmidt, G. Pile, D. Horan, R. Kustom, A. Nassiri)
 - Design constraints (available space, rf power, available rf amplifiers, HOM/LOM damping)

Implementation at APS

- Minimum implementation shown: 4 IDs and 2 BMs
- Emittance growth compensation allows more sectors: maximum number between deflecting cavities to be studied

Parameters/constraints

- Goal ~1 ps (FWHM) in crab insertion; no impact elsewhere
- Typical bunch length 40 ps rms (100 ps FWHM) (std. 24-bunch mode; 4.25 mA/bunch)
- Beam dynamics parametric study (M. Borland)
 - h ≥ 4 (1.4 GHz)
 - Deflecting voltage ≤ 6 MV
- Availability of 100-kW class rf amplifiers limits study to h = 8 (2.8 GHz)
- Available insertion length for cavities nominally 2.5 m
- White paper (optics and rf): h=8, 4 MV, x-ray pulse length 2.5 ps (FWHM), transmission efficiency (flux) ~20%

Office of Scie

May 6, 2005

Assuming CW operation, power and space reqt's favor SC:

- **RF** losses for normal conducting (NC), single cell cavity on the order of 10 MW
- RF losses for superconducting (SC) cavity on the order of 25 W (2 K).

Single-cell vs. multiple-cell SC cavity configurations compared

Office of Scient

U.S. Departmer

Project schedule overview: SCRF

Year 1

- begin new construction to house cryostation and rf power system
- order/receive cryostation and cryomodules
- order rf power system
- design rf deflecting cavity / fabricate prototype

Year 2

- complete new construction
- install cryostation / assemble cryomodules
- receive rf power system; begin installation
- test cavity & component prototypes
- fabricate final cavity & components / test
- begin integration of cryomodules/cavities

Year 3

- complete rf power system installation
- complete rf cavity test
- complete integration/assembly cryomodules/rf cavities, test, and install
- commission

10

Project schedule: optics

- Suite of beamlines to be determined
 - Some compressed, others not
 - Optimized for tuning range(s)
- Upgrades to existing ID beamline(s) include optics, modification of vertical apertures, etc
- Not trivial, but likely in line with typical new beamline commissioning timeframe of a few years

Office of Scienc

U.S. Departmer

11

- Accelerator physics, beam dynamics M. Borland, V. Sajaev
- Superconducting rf cavity preliminary design, preliminary LOM/HOM analysis G. Waldschmidt
- X-ray Optics (afternoon session) S. Shastri

12

Office of Science

U.S. Departmen