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Abstract
  For these ten years, the high gradient of niobium
superconducting RF (SRF) cavities seems to be saturated
around 40 MV/m. The question is in the further technical
R&D or in the fundamental critical field of niobium
material. In this paper the author will try to explain the
saturation from the theoretical point of view. By
Abrikosov theory based on Ginzburg Landau equation,
superheating field is reviewed as the fundamental critical
field in RF application. Abriksov theory is available only
for the temperatures close to the critical temperature (TC)
or the small band gaps. Supposing the small band gap in
such a high gradient 40MV/m, the concept of
superheating field is expanded the low temperatures
around 2K. In this paper, from the temperature variations
of l, x and HC the temperature dependent superheating

field is deduced. The results will be compared with
experimental RF critical fields of Nb, Nb3Sn and Pb
superconducting RF cavities. One will see good
agreements between the theory and the experimental
results. The result in this work strongly suggests the
vortex line nucleation is more likely the mechanism of
theoretical critical field in RF application.

 INTRODUCTION

The Situation of The Current High Gradient
in SRF Niobium  Cavities
  As shown Fig.1, to date bulk niobium superconducting
RF (SRF) cavities have achieved 40 MV/m with the
accelerating gradient: Eacc at 1.5 - 2K by several
improvements in material production, fabrication method,
preparation techniques, and so on. This number
corresponds to 1800Gauss with surface peak magnetic
field: Hp. It exceeds the lower critical field HC1 in
ultrapure niobium with RRR > 2000, which is 1730Oe
around 2K [1]. In addition, this achievement looks to be
saturated around the 40MV/m within +3/-1MV/m in this
one decade as seen in Fig.1. The variation is in the cavity
shape, i.e. the differences the ratio of Hp/Eacc.
  The other interesting situation was reported from Cornell
University in 1997 [2]. It is on the RF critical fields of Nb,
Nb3Sn, and Pb cavities fabricated recently. Their results
are shown in Fig.2. At lower temperatures with Nb cavity,
the temperature dependence of RF critical field looks
different from the expected one from proposed
superheating field by J.Matricon and D. Saint-James [3].
Especially the theory does not fit the data in the Nb3Sn
cavity over the whole temperature rage.
  

The purpose of this paper is to find out a physical
mechanism behind these two situations. The author
reanalyzed the RF critical field of niobium cavity in detail
from the superheating field considering its real
temperature dependence at lower temperatures. He will
conclude the vortex line nucleation as the fundamental
field limitation of the RF field, which was already
reported for Sn cavity by T.Yogi et al. in 1977 [4]. In this
paper, the author will apply Yogi’s concept to the Nb3Sn
and Pb cavities in Cornell Univ. to see the universality of
the fundamental limitation mechanism in RF application,
and will find a good agreement between the theory and
experimental results. Finally, he will conclude the
fundamental field limitation is the vortex line nucleation
with both kinds of superconductors: type-I and type-II.
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Figure 1: Saturation of the high gradient in niobium SRF
cavities.

Figure 2: RF critical fields by pulse measurement in
Cornell University, copied from the reference [2].



Consideration with The Critical Field in
RF Application
   Niobium is a typical type II superconductor, in which
the superconductor is in the Meissner state below the
transition temperature TC. Applying magnetic fields on a
niobium specimen, it favours energetically flux
penetrations at the lower critical field HC1 and leads to the
mixed state, and finally goes to the normal state at the
upper critical field HC2. The thermo-dynamical critical
field HC is defined as:

                    F T F T M dH
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                 (1),

here Fn and Fs are the free energy per unit volume in the
normal and superconducting states at a temperature T,
respectively. The values of these three critical fields are in
order of HC1 < HC < HC2. Therefore, in a first sight one
might consider that when the maximum magnetic RF
field on the cavity surface exceeds the HC1, it will have a
quench and be limited the gradient. This consideration
however might not be right in SRF cavities. The transition
at the HC1 is the first order and needs to a latent heat for
the entropy change between two phases. It is brought by
the flux penetration energy (flux nucleation) in case of
type II superconductors, which relates to the surface
energy in the domain wall between superconducting and
normal states. The RF field amplitude varies with a time
period of 10-8 - 10-9 second, which is enough short if
compare with the flux nucleation time ª 10-6 second. So
it might be possible that there should be in a meta-stable
before going to the HC1 transition. Thus the maximum
field in SRF should be higher than the HC1 in the type-II
superconductors [5].

Belief review of RF Critical Field Experiments
  Superheating is most likely the candidate for such a
surface barrier against HC with type I, or HC1 with type II
Yogi et al. have investigated the SRF critical field in
1970’s with In, Sn, Pb and their alloys Sn-In and In-Bi
exposing small specimens (not cavity) in RF fields [4].
They found that the superheating rather well explains the
SRF critical field qualitatively.
  In 1960’s, the pioneer R&D of SRF cavities has been
started in Stanford University using Pb electroplated
cavities or bulk niobium cavities, and the activity
enlarged to other laboratories. In 1970’s, niobium
material became to be used more widely in SRF cavity
fabrication. Currently the author believes niobium is the
best material for SRF cavities. G.Meuller gave a nice
review in 1986 about the high gradient in SRF cavities
correcting more recent results with niobium cavities [6].
In his paper, the superheating is considered in more detail
as the fundamental limitation with SRF cavities.
Especially the temperature dependence is considered.
  The superheating field was derived as a solution for a
meta-stable sate of Ginzbrug-Landau (GL) equations in
Abrikosov’s theory [7], which is the theory for type II

superconductors. For a deep understanding of the
superheating, one has to learn about the GL Abrikosov’s
theory and type II superconductors, and understandings of
the surface energy and the field penetration are very
crucial.
  This theory is very complicated and useable only for the
temperature near TC because of the perturbation theory
with the order parameter or gap energy. Before going to
discussion of superheating, the author would like to
introduce this theory in order to have easy understanding
for new comers in this SRF field.

ABRIKOSOV’S THEORY

Type II Superconductivity
  That famous BCS theory was established in 1957 [8],
which explains microscopically superconductivity. In
those days however, many elements or a large number of
alloys showed the unexpected superconducting
behaviours: irreversible imperfect superconductivity (so
called mixed state today), second-order transition at a
higher field (so called the upper critical field HC2), which
was much different from the classical superconductivity
(Type I superconductor). In 1957, the same year as BCS,
Abrikosov published a great important paper [7], which
predicts the existence of a new type (so called type II
superconductor today) of reversible magnetic behaviour
in superconductors obeying the Gibzburg-Landau (GL)
equations [9] and having a GL parameter k exceeding the

critical value 1 2/ . He showed that the exact breakpoint
of two kinds superconductor was at k = 1 2/  considering
the surface energy. Four materials with k > 1 2/ , he found
that instead of discontinuous breakdown of classical
superconductivity in a first-order transition at HC, there
was a continuous increase in flux penetration starting at a
first critical field HC1. And it reaches normal conducting
sate at a second critical field HC2, where is the second-
order transition. One however believed that bulk
specimens of any superconductors would, if prepared
with sufficient care, exhibit the reversible, so-called ideal
magnetic behaviour in the magnetization measurement
like the classical superconductors. Abrikosov’s theory
was curiously neglected for several years until about 1962
the almost perfectly reversible behaviour was established
in many pure transition elements like Ta, V, Re, Nb, and
in other alloys like Pb-Tl, In-Bi, Nb3Sn and V3Ga etc..
These superconductors show a new thermodynamic
behaviour different from the early established one as type
I superconductors and his theory thus has been received
for type-II superconductors.

 
Ginzburg Landau Equations [10]
  Abrikosov has established his theory finding the solution
of GL equations. GL theory [9], which was already
proposed 7 years before BCS theory, supposes the free



energy density of superconducting state in a magnetic
field (H) may be expanded in the form:
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where Y(r) is the order parameter and means the local

density of superconducting electrons,  fn0 is the free
energy density of normal sate in zero field; e* is the
effective charge; h(r) is the microscopic magnetic field;
and a, b and m* are phenomenological constants. By

variations of Eq.(2), one obtains the GL equations:
1

2
0

2
2

m i

e

c
A

*

*h
— -

Ê
Ë
Á

ˆ
¯
˜ + + =Y Y Y Ya b                            (3),

j
c

h
e

m i

e

m c
As = — = — - —[ ] -

4 2

2
2

p
x 

*

*
* *

( *)

*

h
Y Y Y Y Y               (4).

In the equilibrium state, a and b are simply related to the

equilibrium value of the order parameter Y•  in zero
magnetic fields. They also are related to the thermo-
dynamic critical field HC:
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  GL equations become more simply when introduced the
two characteristic parameters: penetration length l and

coherence length x. These parameters are given by:
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where the superconducting electron density Ns
* is equal

Y•
2 . It should be noticed that Eq. (7) is the same as the

London penetration. In addition the Ginzbrug Landau
parameter k:
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is essential to describe Abrikosov’s theory. l describes

the spatial variation in the electromagnetic effect and x

provides the spatial variations in the order parameter.
  The dimensionless GL equations are convenient to
calculate the superheating field later. Using the reduced
f = •Y Y/  and measuring all lengths in units as:
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One can rewrite the GL Eqs.(2)-(4) to as following:
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The dimensionless GL equations are found as:
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Surface Energy
  Let’s see a semi-finite superconductor, of which surface
is normal to z = - •  at z=0. The surface energy: sns is

defined as the difference between the actual Gibbs free
energy per unit area and the value that would have if the
asymptotic behavior gs = gn at z= ± •  held throughout the
sample:
                             s ns sH ndz g g∫ -{ }•
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                      (13).

Abrikosov calculated the surface energy putting Eq.(2)
into the integral of Eq.(12):
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or in the dimensionless notation
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From Eqs.(14) - (15), one notices that the surface energy
can be positive or negative due to the balance of the flux
expulsion energy (the first term in Eqs.(14)-(15) )and the
negative condensation energy (the second term in
Eqs.(14)-(15).).
  k (=l/x) is a very important parameter to classify the

superconductor. Fig.3 shows a schematic diagram of a
surface layer separating normal ( z = - • ) and
superconducting (z = • ) in the material. Let’s consider
the configuration in Fig.3 - a). As shown in Fig.3 - a),
when k≪1, then l≪x and the magnetic fields penetrate

only a short distance l into the superconductor. While the

order parameter increases to its asymptotic value Y•  at a



much larger length x. In the region l x£ £z , the

magnetic field vanishes, and the positive energy of the
flux expulsion makes its full contribution. The order
parameter is still appreciably small and the negative
condensation energy is reduced in this region. The net
surface energy is a positive in this configuration.
  On the other hand, when k≫1, then l≫x, the opposite

situation happens. As presented in Fig.3 b), in this
configuration the magnetic field penetrates a larger
distance l into the superconducting region and resulted in

reduction of the positive energy of the flux expulsion for
x l£ £z . In contrast, Y rises rapidly to its asymptotic

value Y• , and the condensation energy makes its full
negative contribution in the region x l£ £z . Thus the
surface energy is negative.  The superconductor is called
type-I if sns is positive and type-II if sns is negative. GL

Eqs. (3) and (4) cannot be integrated in closed form, even

Figure 3: Schematic diagram of variation of h and f  in a
domain wall. (a) is for type I superconductivity and (b)

for type- II, copied from [11].

for a one-dimensional configuration. Therefore, generally
sns must be calculated numerically. However, in limiting

cases; k ≪1 and k ≫1 one has the following exact

results:

s x
pns
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= ◊ ◊1 89
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The critical k value separating these two classes is at

k =
1

2
, which corresponds to ss ns = 0.  In Eq.(15) if

                              2 1 2h f' = -                                   (16),

s ns = 0 is guaranteed. The further calculating of a first
integral of Eq.(14) or (15) shows that Eq.(16) consists
with k = 1 2/ . The precise criterion for classification of a
superconductor thus is now given as;
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 SUPERHEATING FIELD NEAR
THE CRITICAL TEMPERATURE

 
Calculation of The Superheating Field
  Superheating field: Hsh is defined as the maximum
permissible value of the applied field, which satisfied GL
equations. P.G.de Gennes calculated the one-dimensional
Ginzburg Landau Eqs. (11) and (12) for a semi-infinite
superconductor [12]. Let the field H is applied parallel to
the sample, which is true for the SRF cavities, and the
field directed 0-x and the vector potential along 0-y.
Then the equations are:
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here the suffix is dropped in Eqs.(11) and (12). In the
dimensionless unit, it is Hc = 1 2/ . If in the Meissner
state the field is expected to vanish inside of the
superconductor. Here, the boundary conditions are:
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f should not exceed 1 and is positive. Considering the
case k≫1, from Eq.(17)

                               f A2 21= - ,
then Eq.(18) is
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If multiply dA dz/  on both sides, one has the following
equations:
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For the semi-infinite superconductor as mentioned above,
if imposed C=0, one obtains the solution as:
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The penetration depth is in the dimensionless units:
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When sinh( )l = -1, the maximum permissible H is
obtained:

      H Hsh c= =
1

2
,      in the dimentionless units

For k Æ • , the superheating field should be the thermo-
dynamical field HC. For the low-k limit, the GL

approximation gives the superheating field as [13]:

                              H
H

sh
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  For other k, the superheating field cannot be calculated

by analytic method and has to be performed a numerical
integration of Eqs. (17)-(19). Matricon and Saint-James
made the calculation [3]. Their result is presented in Fig.4.
When one fits the result as a function of k in the region

kk > 1 2/ , he gets the following formula:
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Figure 4: Superheating field calculated by J.Matricon and
 D. Saint-James [3].

Physical Intuitional Consideration for Hsh

Plane Nucleation
   Above the calculation on superheating field is
complicate. It is difficult to have physical image. Here,
let’s see more intuitional consideration about it. The
superheating might be related to the surface energy. By a
rough discussion, a linear approximation might be
possible with l and x  in Fig.3. The diagram then becomes

a triangle configuration. In this simple configuration, the
surface energy may be
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here, the super-condensation energy (negative) per unit

volume is considered as - Hc
2 8/ p  at z = • . Supposing

when one apply fields on a superconductor, it makes the
transition to normal conducting state at s ns = 0, the
permitted applied field is:
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This simple consideration gives the superheating field for
type I superconductors:

                      H H Hsh c c= =
x

l k

1      for type I       (21).

In this superheating, flux nucleation should be happened
in the plane penetrated fields. Therefore it is called plane
nucleation. In contrast, for Type II, Eq.(21) gives the
smaller field than HC. If k is larger enough, it will be

smaller than HC1. Thus the simple consideration is not
available for Type-II of the superheating.



Vortex Line Nucleation
  Another intuitional nucleation is a line nucleation of a
vortex. In this case as seen in Fig.5, the condensation
energy (fcore) is canceled by the energy brought by the
applied field (fmag). Thus the following energy balance is
realized:
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8
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Then superheating field is:

                            H H Hsh c c= =
x

l k

1                          (22).

This superheating is called as vortex line nucleation and is
valid for both superconductors.

Figure 5: Vortex line nucleation.

Summary of Superheating
  Here, the predictions of superheating are summarized in
Table 1.

Table 1: Predictions of superheating
Prediction Hsh Availability

J.P. Burger and
D.Saint-Jamis

Hc k    >> 1

J.Matricon and
D.Saint-James*

1 291
0 160

.
.

H c

kk
k    ≥

1

2

Vortex
Line Nucleation

Hc

k
all  k

Plane
Nucleation

Hc

k
k    £

1

2

Orsay Group Hc

21 2/ k

k   <<  1

*The fitted result in this work to make clear the k

   dependence.

MESURMENT OF MAGNETIC
CHARACTERRISTICS

  Now we have finished preparation for data analysis of
the critical field with niobium cavities. When one
considers the temperature dependence in the formulas in

Table1, he can compare the results with experimental
ones. Focused thing in this paper is to find the formula of
Hsh temperature dependent with niobium. This is done
using the formulas in Table 1 by using the temperature
dependences of HC and k. k(T) will be determined by the

temperature dependences of HC, HC1 and HC2. So the next
step is to investigate the material properties of niobium.
However, here before going to the subject, more
instructive descriptions are given for new comers about
the measurement methods such magnetic properties and
magnetization curve, and so on.
  
Measurement of magnetic flux penetration
  Fig.6 [14] shows a very simple measurement for flux
penetration. Fig.7 is the real measurement set-up in KEK
[15]. Fig.8 presents the examples of measurement results.
On the specimen, a pick-up coil is wound fine wire by
several hundred turns. The ends of this coil are connected
to a voltage-meter. A magnetic field H is applied parallel
to the axis of the specimen by a superconducting solenoid
coil. When the field is increased gradually with a constant
speed, by the Faraday’s low an induced voltage appears
on the pick-up coil as:
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H S H
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where Sg is a gap area between the surface of the
specimen and pick-up coil if there is and Ss an area of the
cross-section of the specimen. Up to the HC1, the
specimen is in the Meissner state and field cannot enter
the inside of the specimen, thus Ss=0 and only a constant
induced voltage by the gap appears on the voltage-meter.
When the field crosses over the HC1, flux penetration
starts and a step-like signal occurs on the pick-up coil at
HC1. Increasing the field further the specimens show

Figure 6: Magnetic penetration measurement, copied
                from the reference [14].
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various kind of signals, for instance with a well-annealed
sample, which is presented in Fig.8 (niobium material),
the signal exponentially smoothly decreases after the step-
like signal at HC1 and then reaches a constant voltage at
HC2, which is determined by the sample cross-section area.
In the case of sample with defects, many spick-like
signals appear due to the flux trapping. After chemical
etching such a sample by 100mm, the spick-signals

disappear and a similar signal is observed with the well
anneal sample. Anyway this method is very simple but
one can observe the dynamical flux penetration
phenomena.

.
Figure 7: Magnetic flux penetration measurement

apparatus in KEK.

Figure 8: Examples of output signal in the pickup coil.

Measurement of Magnetization
  In the formulas of superheating, HC is as important as k.

HC is obtained by the integration of the magnetization
curve as seen Eq.(1). Fig.9 shows the magnetization curve
measurement method. The specimen is wound pick-up
coil. The other pick-up coil, which is identical to the first
pick up coil but wound in opposite direction of the first
coil on the specimen, is connected in series. When
increasing the solenoid field H with a constant speed, the
similar phenomenon happens as before. However, only
the magnetization can be observed because the voltage
induced outside of the sample can be cancelled each other
as following:

               
V V V

d

dt
H M

d

dt
H

d

dt
M

A B= - µ + -

µ -

m m0 0( )

   

Figure 9: Principle of measurement of magnetization,
copied from [14].

The output signal is put into an electronic integrator, a
circuit whose output voltage is related to the input signal
by V V dtout inµ Ú . The output of the integrator is therefore:

                         V
d

dt
Mdt Mout

t
µ =Ú

0

.

USEFUL FORMULAS BY
ABRIKOSOV’S THEORY

  We must evaluate l and x of niobium material and

calculate k. These parameters can be calculated by useful

formulas with HC1, HC2 or HC [10]. It will be of worth to
describe about those parameters to understand the
formulas.

H C1

  From a thermo-dynamical consideration, HC1 is
determined as
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where e1 is one flux nucleation energy per unit volume, B

induction field, n flux line density and
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is the fluxoid quantum. Eq.(23) assumes the
noninteraction flux lines. e1 is calculated by both the

London equation and Abrikosov’s solution of the GL
equations. Hc1 is then given for l x/ >> 1:
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Both theories lead the very close results.
  The relationship with HC is given as:
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On the other hand, the relation ship with HC2 is:

                   H

H
c

c

1

2
2
0 08

2
=

+ln( . )k

k
                                      (27).

The temperature variations of HC1 ,HC and HC2 are given
in Fig.10 with ultra-pure niobium with RRR>2000. The
empirical temperature variation of HC1 is:

                              H T
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¯
˜                (28),

and is very close to that of HC.  A linear relationship with
HC1 and HC is presented in Fig.11, is fitted for every
temperature below TC as:
                            H T H Tc c1 0 9469( ) . ( )= ◊                   (29).
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Figure 10:  Temperature dependences of HC1, Hc and HC2   
             of ultrapure niobium with RRR>2000

                 (Data by A.French in the reference [1]).
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Figure 11: The linear relationship between Hc1 and HC in
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HC

 HC is very important to evaluate l. Eq.(9) is rewritten

using the quantum fluxoid as:
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where e*=2e is used. This is another important formula.
When one knows x, l is directly calculated from Eq.(30).

  For both type superconductors, the temperature variation
of HC is found as:
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BCS model calculation shows the agreement with Eq.(31)
within 4% in all temperature range below TC. In Fig.9 for
ultrapure niobium, the temperature variation is given as:
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and is well fitted with TC=9.214K.

H C2

  When the applied field H is increased up to HC2, type II
superconductors have a new thermodynamic transition,
which is of second order. In near the transition, f is small
enough so that GL Eqs (11) and (12) may be linearized.
We thus have following dimensionless equations
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here, the semi-infinite sample surface is normal to
x = -• . This linearized equation then become:
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The general solution is of the form:
                   f ik y ik z u xy z= +exp( ) ( ) ,

where u(x) satisfies the one-dimensional harmonic
oscillator equation:

            u k H x k uz y' ' ( )+ - - -[ ] =k k2 2 2 0                    (36).

The eigenvalue is gives as:
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The discrete eigenvalue thus is:
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HC2 is expected the highest possible critical field, and it
occurs n=0 and kz=0. Thus an important formula
concerning to HC2 is obtained:

                 Hc2 = k             in dimensionless unit

                 H Hc c2 2= k   in conventional unit          (38).

This is a most important formula to obtain the k-value. If

one knows both temperature variations of HC2 and HC,
that of k is directly calculated by Eq.(38) . This can be

rewritten more useful expression for calculation of  x, if

inputting Eq.(30) into Eq.(38):
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This is another important formula to calculate x   and its

temperature dependence. As shown later, from the
temperature variation of x(T), the expected temperature

variation is given as:
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  (40)*.

As seen in Fig.9, for the pure niobium with RRR>2000 it
is given as:
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Temperature Dependence of llll

   This is well established. The theoretical formula of the
temperature dependence of London penetration-depth lL

was given by Daunt in 1947 [16], who suggested
combining the London’s original expression for l with

the Gorter-Casimir two-fluid equation [17], where ns is
replaced by the temperature dependent number of super-
electrons: n t n ts s( ) ( )( )= -0 1 4  and therefore it is given:
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where l pL smc e n( ) / ( )0 4 02 2= [ ]  and t is the reduced

temperature: T/TC. This temperature variation, which is
called today empirical formula, well agrees with
experiment results when x l0 << L T( )(London limit).

Here x0 is defined as:

                            x0 0 18= .
hvF

k TB c

Small deviations from the form (42) have been observed
at very low reduced temperatures, and these can be
explained by BCS theory.
  The experimental value of l can be calculated from the

experimental HC(T) and HC2(T) using Eqs.(30) and (39)
as:
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As seen in Eq.(39), the temperature variation of x is

directly obtained from HC2(T) experimental result. Then
one can put the result into Eq.(43), thus one has the
experimental temperature dependence of l. Such a

calculation result with pure niobium is presented in Fig12.
Eq.(42) fits the experimental result very nicely with
l(0)=419.22Å and TC=9.2143K as fitting parameters. In

the ultrapure niobium case, the fitting result is:
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where the unit is in Angstrom.
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Figure 12: Fitting result by Eq.(42) of the temperature
variation of l. Calculated using French’s data [1].

*The author finally reached this formula, which can lead the correct x(T) as seen later. However, today it is known
  as the Abrikosov-Ginzburg formula. He did not know it by near finishing this paper.



Temperature Variation of xxxx

  The temperature variation x(T) is directly calculated by

Eq.(44) from the experimental HC2(T). The results should
be fitted the following formula:
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     (46).

  
In GL theory the other formula is often used at a
temperature near the transition temperature TC [18]:
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 However, Eq.(47) produces the linier function with T for
HC2(T) as seen in Fig.13 The experimental HC2(T) usually
has a saturation at lower temperature. It cannot represent
the saturation. We thus use Eq.(46) as the temperature
variation of x in this paper. Fig14 shows x(T) with the

ultrapure niobium by the experimental HC2(T). Both
formulas fit the experimental result very nicely with the
same fitting goodness:
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where the unit is in Angstrom.
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Figure 13: Comparison of the temperature dependence
with HC2 between Eqs.(46) and (47).
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Temperature Dependence of kkkk

   k(T) is also directly calculated from the experimental

HC2(T) and HC(T). The result is presented in Fig.14 for
the ultrpure niobium. The data should be fitted by the
following formula:
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                     (49).

For the ultra-pure niobium, the fitting result is as:
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With niobium, one will find that k-value is larger
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Figure 15: Temperature variation of k with ultrapure

             Niobium [1] and the fitting by Eq.(50).

* If one uses this formula, he will lead a wrong temperature dependence of the superheating field.



than1 2/  in every temperature blow Tc, thus niobium is a
well-defined type II superconductor. In addition, one has
to notice that the value increases with decreasing
temperature.

 MAGNETIC PROPERTIES OF THE
INDUSTRIALLY PRODUCED NIOBIUM

MATERIAL

  The above measured magnetic properties of niobium are
for well annealed and ultra-pure material in a lab level. In
SRF cavity production, industrially produced niobium
material is used. To date such niobium material has the
RRR=200~300 in standard. We need to know the
magnetic property with such a material, which might be
different behavior from the ultra-pure specimen. We
measure the HC1 and HC2 for the niobium specimens from
Tokyo Denkai by the method in Fig.6. The niobium
sample has RRR=246 as received and RRR=398 after
annealing at 1400oC with titanium.

RRR=246 Nb Material
  This sample was cut from niobium sheet with RRR=246
and chemically polished by 100microns using 1:1:1 (nitric
acid/hydrofluoric acid/phosphoric acid). The size is 5mm
wide, 2.5 mm thick and 150mm long. The cross section is
a square but the corners are rounded a little bit. A pick up
coil with 250 tunes was wound on the sample. An
example of signal is seen in the bottom of Fig.8. Fig.16 is
the result of temperature variation measurement with HC1

and HC2. HC was calculated presuming the same
relationship in Eq.(29). TC was 8.8K and a little bit low
comparing with ultrapure material: Tc=9.25K. Data
fitting gives the following results:
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  Fig.17 shows x(T) by Eq.(44),  l(T) by Eqs.(44) and

(43). By the best fitting following results are given:
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where the unit is in Angstrom.
  Fig.18 is the temperature variation of k calculated by

Eq.(49). Best fitting gives the results with a similar fitting
accuracy:
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 where the unit is in Angstrom. Best fitting result gives a
little bit higher Tc=10.0K.
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Figure 16: Temperature variations of HC1, HC and HC2

             with RRR=246 Nb material from Tokyo Denkai.
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1400oC Annealed Material
   The sample was cut from the RRR=246 niobium sheet
from Tokyo Denkai and annealed at 1400oC for 3 hours
with titanium getter. The resultant RRR was 398. Fig.18
is the HC1(T) and HC2(T) and HC(T). Best fitting gives the
following results:
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  Fig.20 shows the x(T) and l(T). Best fitting gives the

following results:
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  Fig.21 is the best fitting result with the k(T). Best fitting

gives the results with a similar fitting accuracy:
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As seen in comparison with Fig.18 and Fig.21, such a
high temperature annealing effects on the k-value close to

TC, which makes the value smaller. However the k-vale at

the low temperatures T < 3K changes little by the high
temperature annealing.
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Figure 19: Temperature variations of HC1, HC, and HC2

                  with 1400oC annealed (RRR=398) Nb material.
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Summaries of Material Parameters
  The best fitted magnetic parameters are summarized in
Table 2 to 7.  Fig. 22 shows the RRR dependence of
normalized material parameters by those of the ultrapure
niobium.

Table 2: Fitting results with HC1 (T) for various RRR.
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H  [Gauss]c1( )0 T  [K]c

246 1948.6 8.827
398 1908.5 9.014

> 2000 1850.0 9.214



Table 3: Fitting results with H (T) for various RRR.

H (T) = H
T

Tc c
c

( )0 1
2

◊ -
Ê

Ë
Á

ˆ

¯
˜

È

Î

Í
Í

˘

˚
˙
˙

RRR
H  [Gauss]c ( )0 T  [K]c

246 2057.8 8.827
398 2015.6 9.014

> 2000 1953.1 9.214

Table 4:  Fitting results with HC2 (T) for various RRR
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Table 5: Fitting results with l(T) for various RRR

l
l

(T) =
(0)

1- (T / Tc)4RRR

l ( ) ˙0  [A] T  [K]c

246 433.6 8.718
398 428.0 8.927

> 2000 419.2 9.214

Table 6: Fitting results with x(T) for various RRR
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x( ) ˙0  [A] T  [K]c

246 262.3 8.946
398 266.0 8.969

> 2000 282.6 9.302

Table 7: Fitting results with k(T) for various RRR

k
k

(T) =
(0)

1 + (T / Tc)2RRR
k ( ) ˙0  [A] T  [K]c

246 1.611 10.037
398 1.601 9.195

> 2000 1.508 9.214
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Figure 22: The RRR dependence of TC, l, x, and k, which

are normalized those of ultra-pure niobium material with
RRR~2000.

  COMPARISONS OF RF CRITICAL
FIELD BETWEEN THEORY AND

EXPERIMENTS

  In the comparison with theories and the experimental
critical fields, one thing should be reminded. The results
in Table 1 are superheating fields for DC field. The
superheating is basically fixed by energy balance in the
flux nucleation. Therefore, when one compares DC
superheating fields with RF filed measurement, he must
use the effective strength for the RF field, i.e.
                                      H HÆ

1

2

This requires to multiple the factor 2  to the DC
superheating field in the Table 1. Here, the temperature
dependent formulas for Maticon and Saint-James (MSM)
model, the vortex line nucleation model (VLNM) and the
plane nucleation model are given as:
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                                                           for VLNM          (64),
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                                              for Plane Nucleation.      (65).

Nb Cavity Case
  Here the author compares Hsh(T) between the above
theories and experiments. In Fig.22, black circles are
Cornell results by pulse measurements with a 1300 MHz
cavity produced by Russian high-RRR material and post-
purified by solid-state gettering to 1000 RRR. Crossing
marks are KEK results with 1300MHz niobium bulk
cavities with RRR=200 - 400. As seen before, the



annealing effects on k(T) at the temperature close to TC

and the effect is less at the lower temperature T <3K.
Here, using the fitting parameters for the 1400OC
annealed niobium material in this work, the Hsh(T) for
MSM, VLNM and Plane nucleation with niobium are
given as:
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                                                             for VLNM       (67).
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                                               for Plane Nucleation      (68).

The Cornell data [2] was fitted by these formulas (66) –
(68) in Fig. 22. VLNM can fit the experimental results
rather satisfactorily with both the absolute value and the
temperature dependence, while MSM and Plane
nucleation cannot fit both. The author did not know the
detail Yogi’s works by obtaining his doctoral thesis. In
1976, he already pointed the temperature dependence of
the critical field in it as [3]:
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2            for point nucleation   (71),

0

500

1000

1500

2000

2500

3000

3500

0 2 4 6 8 10

Hc1
Hc
MSM
VLNM
PLANE
Hcr Cornell
Hcr KEK

H
 [

G
au

ss
]

Figure 23: Comparison of  Hsh(T) between the theories
and experiments.

of which first two formulas are same as in this work. He
has pointed that the pure samples with tin and indium
(both are type I superconductors) have a vortex-like
nucleation as the critical field. In case of pure niobium
also, the RF critical magnetic field is more likely the
vortex line nucleation.

Nb3Sn Cavity Case
  It is very curious to see how the VLNM fits the result of
Nb3Sn [2], which is a typical type- II superconductor. In
this case, Hc ( ) / ( )0 0kk  and TC were fitted as free parameters
in Eq.(64).  Fig.24 shows the fitting results by the three
kinds of model: plane nucleation, vortex line nucleation
and point nucleation, which correspond to the formula
(69) to (71), respectively. Only the VNLM model can fit
the result over the temperature range. The fitting result of
VLNM is gives as:

               H T Tsh( ) . [ ( / . ) ]= ◊ -1033 3 1 18 226 4              (72).

When one uses the fitting result:

                    1033 3 2
0

0
.

( )
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Hc

kk
,

if used HC(0)=5400 Gauss [5], the k(0) is calculated as

7.39, which is the reasonable result.
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Figure 24: Fitting results of the experimental RF critical
           field with Nb3Sn cavity in Cornell Uni [2].

Pb Cavity Case
  As pointed by Yogi, in case of type I the RF critical field
more likely is limited by vortex line nucleation. Pb is a
type I superconductor. As shown in Fig.25, Cornell has
measure the RF critical field of a Pb cavity [2]. Let’s fit
their results. In this case also the result was fitted by the
three models. The resultant fitted formulas are:

H T Tsh( ) . [ ( / . ) ]= ◊ -720 23 1 7 322 4                for VLNM      (73),



H T T Tsh( ) . [ ( / . ) ] [ ( / . ) ]= ◊ + ◊ -795 86 1 7 643 1 7 6432
1

2 2    
                                                   for Plane Nucleation  (74),

H T T Tsh( ) . [ ( / . ) ] [ ( / . ) ]= ◊ + ◊ -632 92 1 7 105 1 7 1052
3

2 2

                                                 for Point Nucleation (75).

VLNM gives a quite good fitting result and is consistent
with Yogi’s statement. Plane nucleation also shows the
good fitting. Table 8 shows the fitted parameters for the
case three cases. In our analysis, k(0) and HC(0) are not

fitted independently. HC(0) was fixed as 804 Gauss [5]
when k(0) is calculated in Table 8. Every fitting result

shows a rather large k(0) value, which corresponds to

type II superconductor. Our results are for electroplated
lead material and it might be different from the pure lead.
Anyway we need to measure such material properties by
the method mentioned in the section 4.
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Figure 25: Fitting results of the experimental RF critical
field with Pb cavity in Cornell Uni. [2].

Table 8: Fitted parameter by the three cases for Pb cavity.
          Models

Parameters

Line Plane Point Other
experiment
[18]

TC [K] 7.32 7.64 7.11 7.2
HC(0)
[Gauss]

(804) (804) (804) 804

k(0) 1.58 2.04 1,48 0.5

  CONCLUSION

So far the author has presented the long description
about superconductor to find Hsh(T). For the vortex line
nucleation, the superheating field is calculated as:

                                   H
H

sh
c= ◊2

kk
.

The temperature dependence of Hc is well known as:

                              H T H T Tc o c( ) ( / )= ◊ -[ ]1 2 .

Therefore, finding the Hsh(T) is reduced to find k(T). On

the other hand, since k is calculated as:
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1

2
2H

H
c

c
,

one has Hsh(T) automatically, when HC2(T) is obtained.
The author made a lot of effort and finally reached the
formula of HC2(T):
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This is already well known as the Abrikosov-Ginzburg
formula, but he did not noticed until his near finishing the
paper. He finally obtained the Hsh(T) as:
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1 4
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.

When the superheating field was calculated using this
formula, it developed that the formula can fit nicely the
experimental critical field with Nb, Nb3Sn and Pb cavities.
This result strongly suggests the theoretical critical field
of superconducting RF cavities is vortex line nucleation.
This is the first conclusion in this paper.
  The second conclusion is that niobium cavity, of which
material is expected as the best material for sc cavities,
has already reached the fundamental field limitation by
the current cavity production technology. Thus, the
saturation of the high gradient around 40MV/m is
explained as due to the theoretical field limitation of
niobium material.
  As seen in Fig.26, the RRR dependence of Hsh(T=0)
from the material investigation of niobium is very small,
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Figure 26: RRR dependence of the superheating field
                  with niobium.

i.e. 5% increase even at RRR~2000, therefore any great
improvement in the high gradient cannot be expected in



high RRR niobium materials. Since the Hsh(0) is ~1800
Gauss, if one hopes Eacc = 50 MV/m, which will be
needed for the TESLA-1000, he has to make new cavity
design with a small ratio of Hp/Eacc, for example
Hp/Eacc=36 Gauss/(MV/m). This is the third conclusion.
Fortunately, we have already such a cavity design by J
Sekutowicz et al. in JLAB [19]. To choose a smaller iris
diameter is an easy way to reduce the ratio but the smaller
cell-to-cell coupling becomes other problem with trapping
modes. Thus the number of cell should be reduced in the
extremely high gradient cavity structure. The
superstructure of 7-cell might be a most attractive for the
TESLA-1000.

  The final conclusion is that on the high gradient there
is no hope in the cavities by high TC material like Nb3Sn,
if this analysis is right.
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