#### We could improve:

1. Cavity structure:

2. Materials:

#### 3. **Phenomena comprehension**:

- **1. Cavity structure:** 
  - Low beta
  - Intermediate beta
  - Beta 1
  - Low frequency (e.g. 200 MHz cavities)



#### We could improve:

1. Cavity structure:

2. Materials:

#### 3. **Phenomena comprehension**:

We can improve:

- **2.** Materials:
  - 2.1 Bulk Nb
- Nb High RRR, lower RRR?

2.2 Film Nb/Cu:

• New deposition tecniques: ECR, Arc, UM-Sputtering, Diode Sputtering

2.3 Higher TC

- MgB2 ?
- A15: Nb<sub>3</sub>Sn, Mo-Re,  $V_3$ Si?



#### We could improve:

1. Cavity structure:

2. Materials:

#### 3. **Phenomena comprehension**:

- 3. Phenomena comprehension:
  - **3.1 Clear experimental correlation between cavity performance and processing parametters**
  - **3.2 Influence of additional problems:**
  - **3.3 Fundamental theory:**

- 3. Phenomena comprehension:
  - 3.1 A more estensive and clear experimental correlation between cavity performance and processing paramenters
    - Low H<sub>pk</sub> Q-slope, Middle H<sub>pk</sub> Q-slope, High H<sub>pk</sub>
      Q-slope Vs resonator history (EP, BCP, Annealing T and t, )
    - What is dependent of Eace?  $R_{BCS}$  or  $R_{RES}$ ?



- 3. Phenomena comprehension:
  - **3.1 Clear experimental correlation between cavity performance and processing parametters**
  - 3.2 **Influence of non intrinsic problems:**
  - **3.3 Fundamental theory:**

We can improve:

3. Phenomenon comprehension:

#### **3.2 Influence of non intrinsic problems:**

- Oxygen diffusing into niobium?
- Anodized cavities?
- Oxygen as diffusion barrier?
- Is Hydrogen fully excluded?



- 3. Phenomena comprehension:
  - **3.1 Clear experimental correlation between cavity performance and processing parametters**
  - 3.2 **Influence of non intrinsic problems:**
  - **3.3 Fundamental theory:**

We can improve:

**3.** Phenomena comprehension:

#### **3.3 Fundamental theory:**

- Extension of the  $R_{BCS}$  formula to a field dependent regime
- Does the Nb critical current plays a role?
- Is K<sub>GL</sub> really independent of field?
- What's more important among  $H_{C1}$ ,  $H_C$  and  $H_{C2}$ ?
- Will  $H_{SH}$  somehow help?  $H_{SH}(RF) > H_{SH}(DC)$ ?



#### Short term items must be finished

# R&D for SRF, short term 1 (project oriented)

- Establish best treatment parameters for:
  - Electro-polishing
  - High pressure water cleaning
  - Clean-room assembly
  - RF conditioning

### ==> CARE activity

# R&D for SRF: short term 2 (project oriented)

- QA method for
  - Nb sheet quality
  - EP
  - High pressure water
  - Clean-room assembly
- Industrialization of linac components

## ==> X-FEL preparatory work

## R&D for SRF: medium / long term

- Theory
  - Critical Nb rf field: Hc1, Hc, Hc2, Hsh?
- Experimental determination of max H
  High power short pulse experiment
- Nature of Q slope
  - Measure Hc3,

==> PhD, post doc

# **R&D for SRF: long term**

- Superconductor other than Nb
- Thin film for Q0 improvement

## ==> PhD, post doc

# **Final comments**

- Very useful workshop, lots of information and discussion
- Intensive exchange of technical information
- Substantial reports about fundamental issues of SRF physics
- "Fresh blood" from university of Wisconsin
- New subgrup established about
  - theory of SRF physics and
  - coordination of experiments to intrinsic properties of SRF bulk and film material (coordinator P.Bauer)
- Lets thank Kwang-Je Kim for organization
- Lets continue this way