

Detlef Reschke: Summary

- Precent picture of field emission not complete, but well substantiated
- Standard cleaning and assembly procedures allow high quality cavity performance, but: Field emission (= dark current) is still the main limitation, if usable gradients above 20 MV/m in multi-cell accelerator cavities are required
- Further improvements of standard techniques, quality control and development of alternative approaches necessary!

Gigi Ciovati: Final remark

• Large scatter in medium field Q-slope values for the same cavity production

all the sources for medium field Qslope are not clear yet and the parameters that influence them are not under control

Lutz Lilje: Experimental Data I

- Q(E) curves show a degradation of quality factor at magnetic surface fields of ~100 mT for several surface preparations
 - BCP 1:1:2
 - BCP 1:1:1
 - EP
 - Should the bakeout parameters be different for EP and BCP?
- R_{BCS} reduces by as much a factor of 2
- Residual resistance does not change or increases slightly (a few nOhm)

Lutz Lilje: Experimental Data II

- T-mapping shows heating of a large region (high magnetic field region)
- Temperature for baking
 - Relatively large variety of data available (each lab has a special flavour)
 - Temperatures above 120° C and below 140° C seem favourable
- Surface RRR goes down (G. Ciovati)
- XPS measurements show a change of the chemical surface composition
- Air exposure of the baked surface does not change the cavity performance
- Depth of the bake affected zone
 - 300 nm: R_{BCS} is back to value before bakeout (P. Kneisel)
 - 60 nm: Q-slope re-appears, but not fully back pre-bake state (D. Reschke)

Lutz Lilje: Experimental Data III

- Sample measurements
 - Bulk properties are not changed
 - Surface properties (B_{c3} , critical current) strongly depend on the surface preparation
 - Critical fields and critical currents
 - Power law analysis of the phase transition hints to the surface topology
 - EP is 'two-dimensional', current patterns are more simple
 - BCP has higher dimensionality, more complex current patterns
 - Paramagnetism cannot be explained by oxygen deficiencies alone
- 'In-situ' baking is not the only means to change of the slope (B. Visentin et al. SRF2003 MoP19)
 - Baking under air is effective
 - Plasma discharge
 -

Lutz Lilje: Summary on High field Q-slope and Baking

- Experimentally:
 - Baking is effective to cure the Q-degradation at high field
 - Especially EP cavities allow very high gradients
 - Etched cavities usually show breakdowns at lower fields
 - But there are exceptions from this!
 - Is there a difference in BCP 1:1:1 and 1:1:2?
 - Sample measurements show a change of the surface layer
 - Baking effect is clearly observed
 - Clear difference between etched and electropolished samples
 - Indications that the surface topology can play a role
- Theoretically...
 - ... we are still looking for the 'experimentum crucis'

Clair Antoine: The "right" scenario: as inferred from XPS

Clair Antoine: Conclusions about the Q-slope

- Surface studies allow to rule out several hypothesis : adsorbed layer, modification of the oxide layer, hydrogen...and possibly ITE, morphology.
- Interstitial oxygen is the best suspect.
- Possible influence of Carbon (source = interstitial rather than hydrocarbon).
- There are (difficult) ways to check the variation of the oxygen distribution and/or to measure locally the superconducting gap.
- Morphology seems to better explain quench than slope

Further theoretical developments are needed

Gigi Ciovati: Conclusion

 The same dependence R_s vs. B_p as seen in TM₀₁₀ mode above 90mT was observed in TE₀₁₁ mode at higher field, once the thermal conduc. was decreased by HT

- Q-drop is more probable to be a magnetic field effect
- None of the present models explain all the experimental results

Peter Lee: Summary

- Magneto-Optical Imaging shows that nonuniform flux penetration can occur along some grain boundaries
 - Is this topological or chemical or both?
- Considerable variation in surface topology observed
 - Local inhomogeneity: Orientation of facet surfaces
 - Grain size variation across weld region
 - Grooved grain boundaries in weld region and grain-growth heat treatment.
- Software tools enable quantification of surface topology over large areas.

Hasan Padamsee: Conclusions

- Baking benefit takes place within the first 20 nm of rf layer
- There is a large accumulation of oxygen below the oxide layer, with a maximum at about 20 nm
- Baking eliminates the oxygen related peak
- Mystery: Why does repeated anodization bring back the Q-slope?
- 150 C baking causes irreversible increase in Qslope..perhaps due to break up of Nb2O5 into lower oxides.
- Surface roughness still plays a role in Q-slope..

Bernard Visentin: Conclusions

1 - HF chemical treatment on baked cavities :

Clusters and I.T.E. theories are probably not involved to explain the Low and High Field Q-slope modifications by baking.

2 - High field Q-slope and diffusion parameters :

Diffusion process as the explanation for the Q-slope improvement ?

3 – Integrated Baking to improve the process

Baking (air - 3 hours) during the cavity preparation in clean room

Q-SLOPE AT HIGH FIELD (cont.)

for "Magnetic Field Enhancement" theory (2)

correlations exist between:

* Q-Slope origin and surface roughness ($\beta_m H$)

SRF Workshop' 99 [4] (J. Knobloch)

* Q-Slope improvement (after baking) and H_C increase

Theory still valid to give explanation related to the quench origin

\geq	Q-Slope Fit	Slope before baking (EP = BCP)	Slope Improvement after baking	Slope after baking (EP < BCP)	No change after 2 m. air exposure	Exceptional Results (BCP)	Quench (EP > BCP)	BCP Quench unchanged after baking	Validity
Magnetic Field Enhancement	Y	N (βm et Hc≠)	Y (H₀↑)	$\underset{(\beta_m <; H_c >)}{Y}$	-	$\underset{(high\beta_m)}{N}$	$\mathop{Y}_{(\beta_m<;H_c>)}$	N (Hc↑)	Y
Interface Tunnel Exchange	Y (E ⁸)	Ν (β*≠)	Y (Nb2O5.e↓)	Y (low B*)	N (Nb₂Os,e↑)	N (high B*)	-	-	Y
Thermal Feedback	Y (parab.	Upo	date	e fro	om	Be	rna	rd	N (coeff.C)
Magnetic Field Dependence of ∆	Y (expon.)	N (H _c ≠)	Y (H₀↑)	Y (H₀>)	-	N	-	-	N (thin film)
Segregation of Impurities	?	N (≠ segreg.)	N (only O)	-	-	Y (cleaning)	-	-	Y
Bad SC Layer	N	Y (n.c. layer)	Y (dilution)	N	N (bad layer ↑)	-	Ν	N (H _{c2} `↓)	N (unrealistic)

Table 1: Summary statement of comparison between experiments and theoretical models (Yes or No: theory can or can't explain experimental result).

\mathbf{i}	Q-Slope Fit	Q-Slope before baking (EP = BCP)	Q-Slope Improvem ^t after baking	Q-Slope after baking (EP < BCP)	No change after 4 y. air exposure	Exceptional Results (BCP)	Q-Slope unchanged after HF chemistry	Q-slope TE ₀₁₁ (B) after baking	New Exp.	Quench EP > BCP	BCP Quench unchanged after baking	Argum ^t Validity	Fund ^{al} Disagreem ^t Exper. ? Theory
Magnetic Field Enhancem ^t	Y	$\bigcap_{\substack{m \\ H_C \neq}}^{n} $ and	Y _{Hc} ↑	$\sum_{\substack{\beta_m < \\ H_C >}}$	-	\mathbf{N} high β_m	-	-		$\sum_{\substack{\beta_m < \\ H_C >}}$	N _{Hc} ↑	Y	D ₁
Interface Tunnel Exchange	$\mathbf{Y}_{\mathrm{E}^{8}}$	Ν β* ≠	$\mathop{\mathbf{Y}}_{\operatorname{Nb}_2\operatorname{O}_{5-y}}\downarrow$	Y Low β*	Nb ₂ O _{5-y} ↑	Ν high β*	new Nb ₂ O _{5-y}	improv ^t		-		Y	D ₂
Thermal Feedback	Y parabolic	Y	$\mathop{Y}_{_{R_{BCS}\downarrowR_{res}\uparrow}}$	N	-	N	-	-		-	-	N C coeff. ^t	I
Magnetic Field Dependence of Δ	Y exponent ¹	N _{Hc} ≠	Y _{Hc} ↑	$\mathbf{Y}_{H_{C}}$		N	•	-		-	-	N thin film	Ē
Segregation of Impurities	?	N segreg. ≠	N only O diffusion	-	•	Y good cleaning	-	-		-	-	Y	F
Bad S.C. Layer	N Far from real Q- profile	Y n.c. layer	Y dilution	N	N bad layer↑	-	new bad layer			N	N _{H_{C2}'↓}	Y	D ₂
Next Theory													

My View

- I.T.E. model is probably not working
- Hydrogen is probably not a player in the Q-drop game
- Magnetic field enhancement should be real, but can not explain all observations ⇒ quench field
- Baking and oxygen diffusion \Rightarrow promising, test this model!
- Are all Q-drops the same?? (BCP, EP before bake; EP after bake)
- Combination of Oxygen-M.F.E. model?
- Need to work harder:
 - communicate, correlate our work better (SRF web-page?)
 - exchange all test results, all important information
 - get help from experts