Overview of ongoing Research on RF Superconductivity limits

hedwards, ANL 9-24-04

Motivation for talk

- Where are we putting effort now,
- Do we have enough emphasis on most important areas? And enough collaboration?
- Is there reasonable balance in the overall program? (basic understanding vs observational)
- Background for this morning>s discussion
- Talk includes material provided- has overlap with some of the other presentations, but not necessarily balanced relative to all we have heard (and some overlap with summary talks)

Information provided by: (What they thought important)

- Saito
- Campisi
- Ben-Zvi
- Calatroni
- Claire, Visentin
- Grimm
- Kneisel, Wu

- Padamsee
- Shepard
- Tajima
- Bauer/Lee
- Proch
- Palamieri

Topics, categories

- Toward Higher Effective Acceleration or Beam current
 - Different cavity shapes
 - Packing factor
- Basic understanding
- Measurements of properties
- Surface characterization
- Process optimization
- Films and materials other than Nb
- Nb-plus cavity development
- Programatic R&D

 Toward Higher Effective Acceleration or Beam current Different cavity shapes Packing factor

- Sekutowiczet
- Saito
- Padamsee
- Ben Zvi

Saito

Cure for the high gradient : Eacc~50MV/m

The hope only for the new cavity shape with smaller Hp/Eacc ratio Hp/Eacc ~ 35 Oe/(MV/m) for Eacc=50MV/m e.g Pill box cavity without beam tube Hp/Eacc = 30.5 Oe/(MV/m) , Eacc= 57.4 MV/m

Figure 1: Geometry of three inner cells.

Table 1. Parameters of inner cells

Parameter		OC	HG	LL
Ø _{eguier}	[mm]	187.0	180.5	174.0
Øins	[mm]	70.0	61.4	53.0
k _{eu}	[%]	3.29	1.72	1.49
E _{reak} /E _{are}	[-]	2.56	1.89	2.17
Hp/Eace	[Oe/(MV/m)]	45.6	42.6	37.4
R/Q	[5 2]	96.5	111.9	128.8
G	[Ω]	273.8	265.5	280.3
R/Q•G	$[\Omega \cdot \Omega]$	26422	29709	36103

byJ.Sekutowiczet al.

JLAB LL shape is expected 47MV/m as a realistic cavity shape.

8-cell structure and Superstructure

If keep the same field error as the current TESLA 9-cell cavity, the number of cells is 8 as following:

$$\frac{9^2}{1.87} \cdot \delta \mathbf{f} = \frac{\mathbf{N}_c^2}{\mathbf{1.49}} \cdot \delta \mathbf{f} \implies \mathbf{N}_c = 9 \cdot \sqrt{\frac{1.49}{1.87}} = 8.03 \cong 8$$

However, the shorter structure losses the fill factor and resulted in lower energy reach.

2 X 8-cell superstructure can solve this problem.

Example:

In a 18-cell structure, field error is serious by a factor 4 than a 9-cell. However, if one connects the two 9-cell structure through one beam pipe of a $\lambda/2$ wave length, the problem is reduced much.

Cornell Future R&D Program on Hi Grad

Explore new cavity geometry/new operating mode

•Push for higher Eacc by reducing surface magnetic field which sets the ultimate limit for Nb

•Record Eacc reached

Cornell First Results

MV/m

New Idea HOW TO INCREASE TESLA'S ACCELERATING RATE AT LEAST BY 30%

Valery Shemelin

Cornell

Idea in very early stage !

$$H_{max} = H_{max-tesla}$$

 $E_{max} = E_{max-tesla}$

$$E_{acc} = 1.30 E_{acc-tesla}$$

Many Challenges Remain Is 30% payoff enough?

- Does 3rd harmonic multipactor?
- End-cell tuning needed
- Need two active (independent) tuners
- Must have good phase control of 2 modes
- Need RF source of two frequencies
- Higher frequency mode components (about 50%) will have more losses
- Need to study effect of 3rd harmonic on bunch emittance and energy spread.

Ampere-Class ERL Cavity Ben Zvi BNL

Objectives:

- 1. Low loss factor
- 2. High BBU threshold

Principles:

- 1. Low frequency elliptical cavity
- 2. Large iris (17 cm diameter)
- 3. Huge beam tube (24 cm dia.)
- 4. External ferrite HOM dampers

Cryomodule is under construction, in collaboration with AES and JLAB.

2. Basic understanding

Overview, GurevichVortex line nucleation, Saito(Q slopes, in summary)

Saito Field limitation of vortex line nucleation

3. Measurements of SRF properties

- Campisi,
- Kneisel

Limiting RF fields in Superconductors at X-band

Superconductors' Critical Fields

Campisi Modified Copper TE011 cavity

Pulses of over 100 MW from a few nanoseconds to a few microseconds can be injected into the cavity, which has a diameter of 4.4 cm.

The transition can be detected even if only part of the cavity is superconducting.

R&D Activities at JLAB(1) Kneisel

- Investigation of baking effect on single cell cavity
 - Material parameters (Δ/kT_c , /, R_{res}, λ_0) and Q-drop behavior as a function of baking temperature (G. Ciovati, Journ. Appl. Phys, Vol. 93(3), p.1591)
- Investigation of high field Q-drop and Q-slopes on single cell cavity in <u>TE₀₁₁ and TM₀₁₀ modes</u>
 - Evidence of Q-drop in TE mode at higher fields than TM mode and recovery after baking
 - Addition of fast T-mapping system in near future
- Influence of Ta content in Nb on cavity performance (cost savings)
 - Single cell cavities prepared with BCP, no quench up to $B_{\text{peak}}\text{=}133\text{mT}$ for Ta \sim 1200 wtppm

4. Surface characterization

- Kneisel
- Claire/ Visentin
- Lee/ Bauer

R&D Activities at JLAB(2) Kneisel

- Surface studies on Nb surfaces using SIMS
 - Develop new method to study oxide composition
- Material studies on Nb (mechanical properties under various conditions)
 - Influence of impurities (O, H) on mechanical properties
 - Develop new methods in collaboration with NIST, Uva
- (Thin Nb film energetic deposition- see later)
 - Good crystallographic and SC properties (T_c, RRR) on samples
- Photo-cathodes in SC cavities (not relevant in the context of this workshop)
 - Develop photocathode (Pb, diamond) integrated in SC Nb cavity in collaboration with BNL, DESY

R & D Activities at CEA-Saclay

Grading X-ray

diffraction

Antoine

- PhD collaboration with Stuttgart MPI
- First experiments on mono crystal : signature of the deformation of the Nb lattice by interstitial O. Profiling has been done.

Replica at the quench site

Contour line of replicas, modelling of the edge profile and β (field enhancement factor) for :

- a) first quench site,
- b) same area after 20 µm and quench site @ a new location
- c) new quench location.

Local morphology seems to play an important role in the triggering of the quench.

Collaboration Fnal – ASC/UW on SRF Material Research

Lee/Bauer

GOALS:

•Characterize and investigate state of the art high purity Nb

•Contribute to better understanding of RF surface resistance contribution of grain boundaries

METHODS:

•SEM, AES, XPS, profilometry

•Magnetization, transport (RRR, Ic), magneto-optics, cp

P. Lee / P. Bauer – Report on UW-FNAL Collaboration on SRF Materials Research (Thursday afternoon, session II)

-1- Microscopy and Surface Analysis, -2- DC magnetization, -3- Magneto-optics

Example of magneto-optical image of 5x5 mm² BCP etched and heat treated sample in 80 mT field (6 K)

5. Process optimization

- Padamsee Vertical EP
- Claire/Visentin- EP realistic sample holder

Cornell Future R&D Program on High Gradient

1) Develop vertical electropolishing for multi-cells
Less technical complexity?
but failed in the past

•2) Continue Q-slope studies on BCP/EP cavities and companion Auger/SIMS studies

Cornell- Develop Electropolishing in Vertical Orientation

- Technically less complex than horizontal orientation used at other labs
- Previous attempts failed due to improper stirring
- Special stirrer geometry developed

Reached 35 - 40 MV/m accelerating with single cells, so far...extending to multicells

R & D Activities at CEA-Saclay Antoine

Optimizing EP on samples (rotating sample holder)

<u>@ 16 V :</u>

• t = 470mn, d _{A-C} =22 mm, Rem.Thick. = 160 µm

• t = 470mn, d _{A-C} = 92 mm, Rem.Thick. = 80 µm

• t = 300mn, d _{A-C} = 2.2 mm, Rem.Thick. = 157 µm Standard sample holder

Rotating sample holder: (reproduces cavity geometry, exposure to air, rotation....)

• Rotating anode: surface state differ considerably from what usually found on samples => better tool to estimate optimal conditions on cavities •Near future: EP optimization with rotating anode with "design of experiments" and

mounting of EP facility, transfer optimization from samples to cavities

R & D Activities at CEA-Saclay

Grain Boundary and RRR Measurements

- Very low level 4-wires measurement : a lot of trouble with noise (Need further confirmation)
- Indications of non-uniformity of the niobium in depth and lateral

Q-Slopes and Baking

- Research on Alternative methods to modify Q-Slopes
- Baking studies under atmospheric air
- Integrated System for cavity baking in clean room

6. Films and materials other than Nb

- Calatroni,
- Palmieri
- Genta Wu,
- Tajima

Research lines at CERN

- Effect of roughness
 - Optimisation of substrate preparation EP: this work is considered as completed, although implementing EP requires a continuous and careful monitoring of all the chemistry parameters
- Film structure defects
 - In order give more energy to the growing film, and thus more surface mobility to niobium atoms, a bias electrode has been added to the standard sputtering configuration. This should reduce the voids and dislocation density
 - The bias allows noble gas bombardment at energies ~-80V of the growing film, thus removing also those Nb atoms that are loosely bound (typically in non-correct crystal locations). This is also relevant for reducing the roughness
- Oxidation state
 - Surface effects: Al₂O₃ cap layers should prevent oxygen and suboxides contamination of the Nb film, and at grain boundaries close to the surface

CERN Bias deposition – First SEM images

2 . blas 100 V filt = 4

LNL research on Nb film: investigation of the role of the target substrate orientation on film properties and morphology

Multi-angle substrate holders (faces at 0°, 15°, 30°, 45°, 60°, 75°, 90°)

Growth simulation at 0 and 45 degrees

LNL activity on Superconductors with Tc higher than the one of Nb

JLAB thin film related R&D

Based on the result from energetic niobium thin film deposition, three different energetic deposition processes have been pursued in JLAB.

- A prototype ECR cavity deposition system
- A vacuum arc deposition system for single cell
- A pulsed ion deposition process is being used to produce small niobium samples.

Research at LANL Tajima

- Magnesium diboride (MgB₂) has been evaluated as a new material for SRF cavities.
- RF Surface Resistance Measurement of HIPped bulk MgB₂ at LANSCE of LANL: Results converted to 10 GHz

T. Tajima, J. Liu et al., 6th Europeán Conference of Applied Superconductivity, Sorrento, September 14-18

7. Nb-plus cavity Developments

- Spinning Palmieri
- Nb/Cu Singer, Saito

Palmieri

Seamless cavity spinning at LNL

Cold forming of a multicell resonator from a planar circular blank

Japanese Initiative in the Cold LC Saito

Cost effective & Reliable cavity performance : Nb/Cu clad seamless cavity

8. Programatic R&D

- BenZvi (Gun & cathode)
- Palmieri- low beta
- Grimm "
- Shepard "

The electron gun

Ben Zvi

- We have an operational 1.3 GHz SRF gun. Initial results gave 0.5 nC pulses. Currently running with a mode-locked laser.
- Design work is done towards a 703.75 MHz, ampere class gun.
- R&D towards SRF compatible photocathode with diamond secondary emission assisted .

High β section: ALPI sputtered Nb/Cu resonators

48 Resonators installed at LNL:

- High termal stability
- Performance improvement with operation time
- No microphonics

Grimm Prototype Cryomodules @ MSU [3]

SRF Techniques Developed @ MSU [4]

- Microphonics control in high loaded-Q cavities
- Materials Science
 - Niobium formability & weld properties
 - Improved Nb-helium heat transfer studies
 - Increased Bpeak
- Diagnostics of cavity performance
 - X-ray tomography
 - Boiling helium camera

Electropolished, HPR-cleaned TEM cavities exhibit small 'Q-droop' at 4.2 K Shepard ANL

SRF related R&D at DESY Proch

- TTF linac:
 - New cavities (30) and couplers (40)
 - High gradient module (EP), spare modules

• EC supported R&D (CARE)

- Improved components for TTF
 - Cavities, EP, preparation, couplers, tuners, LLRF

• EC supported R&D (EUROFEL)

- Industrialization of modules, new rf source

• Preparatory R&D for X-FEL

- Module test stand, industrialization of major linac components
- **Participation of DESY at ILC** (international linear collider)
 - First meeting at mid Sept., KEK, towards establishing the "Central Design team", WG5: High gradient cavities

More from Dieter

Stop

Misc

- Reliability- tuners
- Critical developments- SC flange
- Toward basic understanding of what is important
- Understanding toward efficient cost to produce- what is important

Field Limits in SRF Cavities

- 1) Saturation around 40MV/m in gradient (CW) Hp = 43.8 x 40 ~ 1752 Oe
- 2) Hp ~ 1750 Oe with the critical field measurement by pulse
- 3) Conventional superheating model does not fit the T-dependence of the experimental critical field
- 4) Why Nb₃Sn cavity has such a small crtical field ?

The proposed 1-TeV SCSL Saito

Energy Reach [GeV]	Gradient [MV/m]	Main LINAC effective length [km]	Main LINAC total length [km]	Tunnel length [km]
TESLA500 (510) (1752 17m cryomodules)	23.4	21.8	29.78	33
TESLA800 (810) (1596 17.6m cryomodules)	35.0 2 x 9-cell SST	25.45	28.09	33
US SCLC 500 (510) (1462 17m cryomodule)	28.0	18.22	24.85	46.8
US SCLC1000(1020) (2340 17m cryomodules)	35.0	28.590	39.78	46.8
SCLC500 (510) (1170 17m cryomodules)	35.0	14.58	19.89	33
SCLC1000(1018) (1752 17m cryomodules)	45.0 2 x 8-cell SST	22.64	29.53	33

Our proposals:

1st step, 35MV/m operation, 33km long tunnel,

Save the cost of the first 500GeV SCLC construction.

2nd step, 45MV/m operation used new cavity shape and STT

Re-install new SST modules in the existing 33km tunnel for energy upgrade in future.