

"Pushing the Limits of RF Superconductivity"

Workshop ~ Argonne National Laboratory ~ 22-24 September 2004

Bernard VISENTIN

dap <u>nia</u> CEC saclay	OUTLINE	
Pushing the Limits of RF Superconductivity Workshop ~ Argonne Nat. Lab. ~ 22-24 Sept. 2004	Baking on Low, Medium and High Field Q-Slopes HF Chemistry on Low and High Field Q-Slopes Diffusion (C_S , T , t) at High Field Q-Slope Integrated System for Cavity Baking	

INTRODUCTION

Improve the cavity performances (higher Q, higher field, quench) Understand the $Q_0(E_{acc})$ curve

Experiments on Nb cavities

Experiment on Nb cavities Theory Analysis on Nb samples

Frame for existing theories

Suggestion for new theories

Argument mainly based on Saclay experiments

dapnia œ saclay

Superconductivity

RF

Pushing the Limits of

22-24 Sept. 2004

Argonne Nat. Lab.

Workshop \sim

Bernard

already published

Reference [n] new results

BAKING AT LOW TEMPERATURE

Brief Description ~ Some Features to Keep in Mind

1. Soft Heat Treatment ($110 / 120 \circ C - 50 / 60$ hours)

2. First discovered on cavity with standard chemistry (BCP)

 $(50\% R_{BCS} decrease - slight R_{res} increase)$

The phenomenon exists also on electropolished (EP) cavities

Bernard

VISENTIN

dapnia

CEO saclay

BAKING AND Q-SLOPES

Baking has an effect on the three Q-slopes (BCP and EP cavities):

* enhancement at low field * slight flattening at medium field * strong improvement at high field

Without Baking : Electropolished Cavity Can Not Reach 40 MV/m

Q-SLOPE AT HIGH FIELD

Bernard VISENTIN

DIFFUSION PROCESS

Baking treatment : R_{BCS} (ℓ) decreases

decrease linked to baking time

 \rightarrow diffusion

SRF Workshop 1999 [7] (P. Kneisel)

The Element ? Oxygen is good candidate

- Nb_2O_5 , NbO, sub-oxides, O interstitials at the interface with Nb
- diffusion at low temperature (Palmer's Thesis 1988) and more recently on sample analysis by XPS
- diffusion depth @ 120°C / 60 h compatible with RF layer (50 nm, 2K)

Bernard VISENTIN

22-24 Sept. 2004

DIFFUSION PROCESS (cont.)

Diffusion Equation (Fick's 2nd law)

Diffusion Coefficient (Arrhenius equation)

Where : C(x,t) is the concentration, E_a the activation energy, R the universal gas constant, T the temperature.

Pushing the Limits of RF Superconductivity Argonne Nat. Lab. Workshop \sim

Analytic solution in few cases, specially for a semi-infinite solid : with the initial condition (bulk) $C(x,0)=C_0$

and the boundary condition (surface) $C(0,t)=C_s$

 $\frac{C-C_s}{C_0-C_s} = erf \frac{x}{2\sqrt{Dt}}$

Bernard VISENTIN

Superconductivity

RF

Pushing the Limits of

22-24 Sept. 2004

Argonne Nat. Lab.

Workshop \sim

DIFFUSION AND Q-SLOPE

First Element :

E_{acc} onset for Q-Slope is linked to the diffusion parameters

$$C = C_{S} \operatorname{erfc} \frac{x}{2\sqrt{Dt}}$$
$$D = D_{0} e^{-E_{a}/RT}$$
$$\left\{ \begin{array}{c} C_{S}, T, t \end{array} \right\}$$

saclay

DIFFUSION AND Q-SLOPE (cont.)

Other Elements :

Change diffusion parameters

time $\downarrow \qquad 60 \rightarrow 3 \text{ hours}$ T $\uparrow \qquad \left\{ \begin{array}{c} 110 \rightarrow 145 \text{ °C} \\ 120 \rightarrow 160 \text{ °C} \end{array} \right.$

Baking (atmospheric air)

Q-Slope change but 160 °C / 3 h is too much

Adjustment : 145 °C / 3h

CONCLUSIONS

Bernard

VISENTIN

dapnia

CEC saclay

1 - HF chemical treatment on baked cavities :

Clusters and I.T.E. theories are probably not involved to explain the Low and High Field Q-slope modifications by baking.

2 - High field Q-slope and diffusion parameters :

Diffusion process as the explanation for the Q-slope improvement?

3 – Integrated Baking to improve the process

Baking (air - 3 hours) during the cavity preparation in clean room

REFERENCES

J. Halbritter

[3] SRF'2001 Workshop – Tsukuba (J) – MA006 P. Kneisel

[7] SRF'1999 Workshop – Santa Fe (USA) – TUP044 J. Knobloch

[4] SRF'1999 Workshop – Santa Fe (USA) – TUA004

B. Visentin et al.

- [1] EPAC'1998 Stockholm (S) TUP07B
- [2] SRF'1999 Workshop Santa Fe (USA) TUP015
- [8] PAC'2001 Chicago (USA) MPPH122
- [9] EPAC'2002 Paris (F) THPD0013
- [5] SRF'2003 Workshop Travemünde (G) TuO01
- [6] SRF'2003 Workshop Travemünde (G) MoP19

dapnia

CEO saclay

Superconductivity

RF

Pushing the Limits of

22-24 Sept. 2004

Lab.

Argonne Nat.

Workshop

ACKNOWLEDGEMENTS

Special thanks to my Saclay colleagues for their technical support :

Alain Aspart – Yves Gasser – Jean Pierre Poupeau (Chemistry)

> Jean Pierre Charrier – Bernard Coadou (RF tests and Vacuum)

Superconductivity

RF

Pushing the Limits of

22-24 Sept. 2004

Argonne Nat. Lab.

Workshop \sim

Q-SLOPE AT MEDIUM FIELD

Theory : Thermal dependence of R_S

Q-Slope

Surface Treatment by NP or NS Chemistry (1:10) @ $110^{\circ}C / 1$ hour + HF (45')

Enhancement of the medium Q-slope

(not well analyzed at this moment : surface pollution)

Differences less marked between M and HF Q-Slopes

 $6 \text{ Nb} + 10 \text{ HNO}_3 \rightarrow 3 \text{ Nb}_2\text{O}_5 + 10 \text{ NO} + 5 \text{ H}_2\text{O}$

 $Nb_2O_5 + 2 H_3PO_4 \rightarrow Nb_2O_2(PO_4)_2 + 3 H_2O$

$$Nb_2O_5 + n H_2SO_4 \rightarrow Nb_2O_{5-n}(SO_4)_2 + n H_2O_{5-n}(SO_4)_2$$