

Field Emission Overview: Cleanliness and processing

Detlef Reschke DESY

- Introduction
- Present picture of field emission
- Standard procedures
- Practical consequences and Alternative cleaning approaches
- Processing in Accelerator Structures
- Summary

Introduction

Major limitation of the last years in multi-cell cavities, especially in beam operation:

• Field Emission!!

- Typical (good) onset of field emission at 1.3 GHz
 - single-cell cavities:
 - multi-cell cavities (vertical + horizontal):
- But:

 $E_{acc,onset} > 30 \text{ MV/m}$ $E_{acc,onset} \approx (20 - 25) \text{ MV/m}$

Introduction

• 35 MV/m without field emission in e⁻ - beam operation is possible !!

Present picture of field emission: instruments

• Some tools developed for field emission investigation

Present picture of field emission: observations

- Metallic (conducting) particles of irregular shape; typical size: 0,5 20 μm
- Only 5% 10% of the particles emit
- hydrocarbon contamination of the vacuum system
- Modified Fowler-Nordheim's law :

$$I \propto A_{FN} \cdot (\beta_{FN} E)^2 / \Phi \cdot exp \ (- \ \frac{C \ \Phi^{3/2}}{\beta_{FN} \ E} \)$$

- typical β -values between 50 and 500 for srf cavities
- A_{FN} (FN emission area) not directly correlated to physical size of emitter
- No substantial difference in rf and dc behaviour

Present picture of field emission: model

- Protrusion-on-protrusion model explains the experimental observations
- Modifications of A_{FN} and β by adsorbed gases and oxide layers
- Activation of emitters between 200C and 800C by modification of the boundary layer

 \rightarrow influence of 120C bake-out ??

Argonne, 23.09.04

Present picture of field emission: processing

- Processing of emitters ("conditioning") possible
 - i) rf and helium proc. with moderate rf power and cw-like operationii) high peak power processing with high rf power and short pulses
- Helium processing: i) modification of the adsorbed gases (≈ seconds)
 ii) explosive destruction (≈ subseconds; rare)
- High peak power processing (HPP): local melting leads to formation of a plasma and finally to the explosion of the emitter (model by J. Knobloch)
 → "star bursts" (Lichtenberg figures) caused by the plasma

Present picture of field emission: summary

- Quality of final cleaning & dustfree assembly is crucial for field emission free cavities
 - \rightarrow perfect cleaning of cavity + all auxiliaries
 - \rightarrow dustfree assembly
 - → pumping & venting without recontamination (particles, hydrocarbons)
 - \rightarrow documentation
- surface conditions are poorly known compared to semi-conductor industry:
 - No investigations of the sensitive inner cavity surface possible !
 - samples \rightarrow very valuable, but bad statistics
 - cutting of cavities \rightarrow continue Cornell experiments
 - imprint technique \rightarrow surface morphology
- no review of contamination and cleaning mechanisms see P. Kneisel, B. Lewis, SRF workshop 1995

Standard procedures

- Very rough summary of final treatment !
- Final chemical etching or electropolishing \downarrow \downarrow \downarrow BCP 1:1:2 HF : H₂SO₄ with volume ratio 1:9
 - typical final 10 40 µm removal of inner surface
 - closed system with integrated DI-/pure water rinsing
 - acid quality: "pro analysi" or better
- Questions:
 - Which level of acid quality and particle filtration necessary?
 - Which "clean" environment necessary?
 - Alternative acid mixtures? Comparison of BCP 1:1:1 vs. 1:1:2?

BCP and EP facilities

Argonne, 23.09.04

- (ultra) pure water rinsing
 - cold DI-Water > 12 M Ω cm; particle filtered
- 1. High pressure rinsing (cleanroom cl.10 100)
 - inside rinsing of open or plastic flanged cavity
 - ultra pure water with p = (80 150) bar

- Drying
 - e.g. open in class 10
- assembly (cleanroom cl.10)
 - well cleaned components (flanges, power coupler, bolts, nuts)
 - well-trained and motivated personal
 - keep duration of actions at open cavity short
 - simple flange & gasket design e.g. NbTi-flange with AI-gasket
 - check of cleanliness?

12

- leak check + venting (cleanroom cl.10)
 - oil-free pumping system
 - laminar venting with pure, particle filtered N₂ or Ar
- N-times high pressure rinsing (cleanroom cl.10 100)
 - check of particles (+ TOC) of HPR water
 - check of drain water as quality control of rinsing effect

- assembly of final flange after open pre-drying (cleanroom cl.10)
- final drying by pumping + leak check + venting (opt.: heating < 100C)
 analysis of residual gas composition
- assembly of power coupler (cleanroom cl.10)
 - pre-conditioning effect gets lost by water rinsing

- horizontal test ("dirty" experimental hall)
- cleaning for string assembly ("dirty" \rightarrow cl. 10000 \rightarrow cl.10)
- Venting (cleanroom cl.10)

- assembly of cavity string (cleanroom cl.10)
 - includes gate valves + magnets
 - on the job cleaning of bolted beam pipe flanges necessary
- final leak check + venting for transportation (cl.10 \rightarrow "dirty")
 - maybe repeated in "dirty" surrounding

Standard procedures: risk analysis

- Assembly:
 - TTF: 3 of 10 assemblies + 3 of 4 disassemblies after final HPR
 - risk of contamination with particles reminder: most particles are created during opening bolt-nut connections!
- String assembly:
 - no further cleaning of inner cavity surface possible
 risk of improper cleaning due to complex structure
- Venting:
 - TTF: 3 5 times vented between final BCP/EP and beam operation
 - \$ risk of contamination with particles? => no negative experience

Practical Consequences: personal view

- Personal view of open questions and "to do"-list:
 - check of particles and water quality of HPR supply water
 - practical approach, how to judge about the quality of final cleaning (e.g. Is particle counting of drain water useful? New clever ideas for sample experiments?)
 - simplify procedure and components with respect to cleanroom work
 - cavity cleaning option before module assembly
 - optimal surface treatment with respect of field emission (BCP; EP; mixture)
 - influence of "120C bake-out" on field emission??
 - ????

Practical Consequences: improvements

- Improvements of present procedures
 - hot water rinsing (better solubility, better drying)
 - improved high pressure rinsing systems
 - (no moving parts inside cavity; higher pressure; different jet shape; rinsing of longer units possible?)
 - drying procedures?
 - welding of flanges

(connecting cavities to a "super-structure"; e⁻ beam or Laser welding)

- ????

Alternative Cleaning Approaches

- Megasonic Rinsing
 - effective cleaning of sub-micron particles
 - development necessary:
 - better transmission of power \Rightarrow (small) oscillator inside cavity transportation of particles \Rightarrow high flow rate
- Dry-Ice Cleaning
 - effective cleaning of sub-micron particles and film contamination

• Others:

Laser, Plasma, UV light, hot steam, etc. \Rightarrow no activities ??!

Processing in accelerator structures: LEP II

- successful rf-processing of LEP II structures => <E_{acc}> = 7,2 MV/m in NbCu-cavities
- He-processing: "success was limited" and high operational risk

Figure 3: RF unit voltages after conditioning in 1998, 1999 and 2000

Processing in accelerator structures: TTF

- HPP on 5- and 9-cell structures in vertical tests: improvement from (10-15) MV/m to (20-28) MV/m
- Typically E_{acc} (pulsed) $\approx 2x E_{acc}$ (processed)

Fig. 2: Cavity C19 before and after HPP. The Q0 recovered partially after warm up to room temperature.

Processing in accelerator structures: TTF

 Processing of module 2 in linac successful (Feb 1999) (operation limited by power coupler above 19 MV/m)

Processing at high gradients

- HPP for gradients above 30 MV/m in 1.3GHz nine-cell structures?
- \rightarrow No experience?!
- \rightarrow Very high power necessary (coupler performance)

	pulse length	pulse length [µsec]		
Eacc [MV/m]	200	400	500	
40	2,45 MW	0,79 MW	0,57 MW	
60	5,5 MW	1,77 MW	1,28 MW	
80	9,77 MW	3,15 MW	2,28 MW	
for $Q_L = 3 \cdot 10^6$ (b	y D. Kostin, DESY)		

Summary

- Precent picture of field emission not complete, but well substantiated
- Standard cleaning and assembly procedures allow high quality cavity performance, but:
 Field emission (= dark current) is still the main limitation, if usable gradients above 20 MV/m in multi-cell accelerator cavities are required
- Further improvements of standard techniques, quality control and development of alternative approaches necessary!
- Thanks to C. Antoine, R. Losito, L. Lilje, D. Kostin, W.-D. Moeller, H. Padamsee, B. Visentin and many other colleagues!

Literature

- Some literature:
 - E. Ciapala et al., SRF Workshop 2001
 - W. Kern ed., Handbook of Semiconductor Cleaning Technology, 1993
 - P. Kneisel, B. Lewis, SRF Workshop, 1995
 - P. Kneisel, Contamination Workshop Jlab, 1997
 - H.Padamsee, J.Knobloch, T.Hays, RF Superconductivity f. Accelerators, 1998
 - D.L. Tolliver, Handbook of Contamination Control in Microelectronics, 1988

• In general:

Proceedings of the SRF Workshops

