Overview on High Field Q-slope (Non-field Emission)

Experiments and Theory

Lutz Lilje@desy.de DESY -MPY-

ANL 2004

- History
- Experimental data
 - Cavity measurements
 - Measurements on samples: BC3, critical currents
- Theories

Review on Experiments

- Several people have contributed and helped me in the preparation of this talk: P. Kneisel, D. Reschke, B. Visentin, P Schmüser
- Focus is :
 - mostly on 1.3 GHz niobium bulk elliptical cavities unless otherwise mentioned
 - data not presented by Bernard during SRF2003 (Paper is in the reading list)
- Theories will be looked at only briefly

Lutz Lilje DESY -MPY-

Short History

- 1997 'European Headache'
 - Degradation of the quality factor at fields above 20-25 MV/m without measurable field emission
 - Only for etched cavities???
 - Excellent KEK results on EP
- 1998 B. Visentin at Stockholm
 - Low temperature bake (~110°C) on etchted cavities improves Q at high field
 - 'In-situ' bake= Cavity inside is under vacuum
- 1999 EP cavities with Q-slope
 - Measurements on cavities with EP (CERN-CEA-DESY)
 - Low-temperature bake is mandatory for a high field >35 MV/m
 - Reproduced at KEK
 - low temperature bakeout was part of the drying process

Lutz Lilje DESY -MPY-

Baking Effect on BCP Cavities ($Q_{slope} - R_{BCS} - R_{res}$)

"in-situ" baking discovered on BCP cavity

slope improvement (90 < T < 120°C) - degradation (T > 150°C)

(B. Visentin et al. - EPAC '1998 - Stockholm)

SRF'2003 (11 th Workshop)

Q-Slope at High Gradients

4

Baking Effect on EP Cavities

Same phenomenon on E.P. cavities

before baking: Q-slope identical to BCP

apparent superiority of EP reported before ? cleaning procedure at KEK wet cavities (High Power Rinsing) directly pumped out and baked at 85°C/20h to accelerate pumping speed SRF ' 99 Santa Fe P. Kneisel. – TUP 044

K. Saïto. – *TUP 031*

L. Lilje *et al.* – *TUA 001*

B. Visentin et al. – TUP 015

after baking : Q-slope improvement

(Saclay cavity – EP & tested @ KEK)

SRF'2003 (11 th Workshop)

Q-Slope at High Gradients

Differences between BCP and EP

higher efficiency of baking on EP cavities (from 85°C)
 residual slope on BCP cavities even with baking (120°C)

higher quench field for EP cavities (40 MV/m)

surface roughness

(R.L. Geng et al. - SRF '99 – Santa Fe)

 $\Leftrightarrow \mathbf{BCP} (117 \, \mu \mathrm{m}) \qquad \mathbf{EP} (90 \, \mu \mathrm{m}) \Rightarrow$

 $5-9 \ \mu m$ (statistic on step height) $2-5 \ \mu m$

SRF'2003 (11 th Workshop)

Q-Slope at High Gradients

Bernard Visentin

6

Experimental Data I

- Q(E) curves show a degradation of quality factor at magnetic surface fields of ~100 mT for several surface preparations
 - BCP 1:1:2
 - BCP 1:1:1
 - EP
 - Should the bakeout parameters be different for EP and BCP?
- R_{BCS} reduces by as much a factor of 2
- Residual resistance does not change or increases slightly (a few nOhm)

Temperature Mapping: EP-BCP before bake:

You spot the difference!

- A beer to the person who tells me which of these T-maps shows the etched cavity
- DESY insiders are excluded!

Temperature Mapping: EP-BCP:

- You spot the difference!
 - Top right: BCP
 - Lower left: EP
 - Marginal difference:
 - Global heating in both cases

Temperature mapping at 33MV/m

... before in-situ bakeout at 120°C \Rightarrow Large area in the high magnetic

field region of the cavity heats up

 \Rightarrow Global effect

... after in-situ bakeout at 120°C

 \Rightarrow Heating of the equator welding

 \Rightarrow Change of the surface properties of the niobium

Bake Temperature

Q0(Eacc,max) before and after Bake (all cavities)

Bake Temperature

	bake T(°C)	before bake	after bake	Gain	Ratio
	all	31.9	35.6	3.7	
Eacc,max	100-110	31.9	35.9	4.0	
(MV/m)	120-129	32.6	35.8	3.2	
	130-139	30.8	34.4	3.6	
	All	27.0	30.7	3.7	
Eacc @Q₀=1× 10 ¹⁰ (MV/m)	100-110	25.9	30.5	4.7	
	120-129	27.9	29.4	1.5	
	130-139	28.2	29.6	1.5	
Q₀(Eacc,max) EP(all cavities)	All	1.9(2.3)	6.7(6.5)		3.5(2.9)
	100-110	2.0(2.2)	5.3(5.1)		2.6(2.3)
	120-129	1.8(2.0)	9.2(7.7)		5.0(3.8)
(^10)	130-139	1.5(2.7)	8.0(8.9)		5.4(3.3)

Hao, Reschke 2003

Lutz Lilje DESY -MPY-

Contamination of the Surface Layer

- These results hint to a contamination of the surface niobium layer relevant for the RF shielding
 - The prime candidate is oxygen...
 - Several XPS measurements show a decomposition of the surface dielectric oxide layer (Nb2O5)
 - The suboxides like NbO (and others) seem to be enhanced
 - … but are there other candidates?
- What is depth of the material affected by the bake?

Change of Surface Oxide

Change of the Oxide Structure

ARXPS by A. Dacca INFN / T=150°C

Exposure of a Baked Cavity to Air

Exposure of a Baked Cavity to Air

Exposure of a Baked Cavities to Air

R_{BCS}: Material Depth Affected by the Bake

1B8: oxipolishing (= anod. + HF rinse)

- 30V anodising (\approx 60 nm Nb₂O₅-layer) + HPR + HF-Rinse + HPR E_{acc} = 37.3 MV/m @ Q₀ = 4.8 ·10⁹, limited by BD; no FE

=> Q-slope without fieldemission present again!

Reschke 2004

01.10.2004

Lutz Lilje DESY -MPY-

Experimental Data II

- T-mapping shows heating of a large region (high magnetic field region)
- Temperature for baking
 - Relatively large variety of data available (each lab has a special flavour)
 - Temperatures above 120°C and below 140° C seem favourable
- Surface RRR goes down (G. Ciovati)
- XPS measurements show a change of the chemical surface composition
- Air exposure of the baked surface does not change the cavity performance
- Depth of the bake affected zone
 - 300 nm: R_{BCS} is back to value before bakeout (P. Kneisel)
 - 60 nm: Q-slope re-appears, but not fully back pre-bake state (D. Reschke)

Susceptibility Measurements on Niobium Samples

- Bernd Steffen, Sara Casalbuoni et al.
 - Preprint physics/0403045 on xxx.lanl.gov
 - DESY Report 04-027
 - Accepted for publication in NIM A
- Bulk properties
 - $-B_{c}, B_{c2}$
- Surface properties
 - $-B_{c3}$, critical currents, normal state susceptibility

Susceptibility Measurements: Bulk Properties

- Surface treatment does not change the bulk properties e.g. B_c and B_{c2}
 - EP vs. BCP

- Baking

	BCP	EP		
T_c [K]	9.263 ± 0.003			
RRR	≈ 300			
surf. roughness				
on grain [nm]	≈ 1			
steps at grain bound.	1-5 $\mu{\rm m}$	$\lesssim 0.1 \mu {\rm m}$		
$B_c(0)$ [mT]	180 ± 5			
$B_{c2}(0) [mT]$	410 ± 5			
$J_c(0,0) \; [{\rm A/mm}^2]$	240 ± 10	180 ± 10		

Example: Temperature dependence of B_{c3} for an etched sample

Susceptibility Measurements: B_{c3}

 Surface critical field B_{c3} depends on surface preparation

Lutz Lilje DESY -MPY-

Ratio of r₃₂=B_{c3}/B_{c2}: Bake Temperature and Duration

- r₃₂ (Ginzburg-Landau) =1.695
- In these measurements: r₃₂ >1.8
- Assume that the surface B_{c2}^{surf} has changed
- Estimation of the impurity content of the surface layer possible

Lutz Lilje DESY -MPY-

What would be the Oxygen Concentration Inside the Niobium?

 Calculation of the oxygen concentration using a formula found by Koch (1974)

$$r_{GL} = 1.695$$

 $B_{c3} = r_{GL} B_{c2}^{surf}$

$$c_{\rm O} \ [at. \%] = 1.475 \cdot 10^{-3} (B_{c2}^{surf} \ [{\rm mT}] - 276)$$

Lutz Lilje DESY -MPY-

Critical Surface Fields

- Existence of two critical surface fields
 - At B_{c3} the surface is superconducting only in small superconducting domains
 - At B_{c3}^{coh} a coherent wavefunction exists on the full surface

Power Law Analysis: BCP vs. EP

- The critical exponents of the power law fits near B_{c3}^{coh}
 - s = t = 1.3 ± 0.1 for EP
 - $s = 1.05 \pm 0.1$, $t = 1.4 \pm 0.1$ for BCP samples.
- Therefore:
 - the smooth EP surface is able to support planar (two-dimensional) surface currents
 - EP samples feature a coherent surface phase which resembles the Meissner phase in the bulk
 - the rough grain boundaries in a BCP surface enforce more complicated current patterns.
 - In the BCP samples this coherent phase is disturbed by weak links at the grain boundaries.

01.10.2004

Lutz Lilje DESY -MPY-

Critical Surface Currents

- The surface current is a factor of 6 larger for EP than for BCP
- Power-law analysis
 - Abrikosov: v =1.5
 - **EP**: v =1.6 ±0.1
 - **BCP**: v= 2.5 ±0.3
- This indicates that the surface currents for etched surface have to follow more complicated orbits
- lower current density are possibly related to the larger roughness of an etched surface
- Unfortunately the surface currents are about three orders of magnitude too small to sustain an RF magnetic field exceeding B_{C2}

 $J_c^s(B) \propto \left(1 - \frac{B}{B_{c^2}}\right)$

Paramagnetic Susceptibility (Normal state)

- In addition to the usual paramagnetism of the conduction electrons, there are localized paramagnetic impurities
- Curie-Weiss constant is about 100 times larger than expected from oxygen deficiencies in the Nb₂O₅ layer
 - Evidence for other impurities ???

Sample	$C \ [\mu \mathrm{K}]$	θ [K]
BCP	72.3 ± 0.1	-0.5 ± 0.2
BCP baked	100.6 ± 0.07	-2.2 ± 0.1
EP	40.2 ± 0.3	-0.8 ± 0.2
EP baked	71.0 ± 0.1	-1.5 ± 0.2
BCP baked+ $10\mu m$ BCP	48.3 ± 0.4	-1.7 ± 0.3

Experimental Data III

- Sample measurements
 - Bulk properties are not changed
 - Surface properties (B_{c3} , critical current) strongly depend on the surface preparation
 - Critical fields and critical currents
 - Power law analysis of the phase transition hints to the surface topology
 - EP is 'two-dimensional', current patterns are more simple
 - BCP has higher dimensionality, more complex current patterns
 - Paramagnetism cannot be explained by oxygen deficiencies alone
- 'In-situ' baking is not the only means to change of the slope (B. Visentin et al. SRF2003 MoP19)
 - Baking under air is effective
 - Plasma discharge

-

Side Remark: EP vs. BCP

- Since the 'European headache' has been cured by EP and baking - thanks to Kenji et al.-...
- ... we should now together cure the 'Japanese Headache' discovered yesterday:
 - There exist a few good etched cavities.
 - WHY?
- I do not know the medication, but we can look at the available data.

Electropolished 1,3 GHz Elliptical Niobium Cavities K. Saito et al. KEK 1998/1999

周利用機開法人

4.2 K Residual resistivity – 80-100 MHz

1.3 GHz High Gradient Data: EP vs. BCP

Surface treatment	Type of cavitiy	# of cavities at E _{acc} >35MV/m or B _{surf} >140 mT	Bake	Comment
BCP 1:1:2	Single-cell	1	Yes	Saclay
	Multi-cell	2	No	DESY Q<5*10^9, High power test only
BCP 1:1:1	Single-cell	4-5	No	Kneisel (1995), 1 NbCu clad
EP	Single-cell	16	Yes	Various: 6 KEK, 7 CERN-CEA-DESY, 3 Seamless (Saito et al.)
	Multi-cell	5	Yes	KEK-DESY cw, 3 of these in High power test

Comparison of EP to Standard Etch

(Results from the KEK-DESY Collaboration)

results from mode analysis of multi-cells in cw measurement)

Lutz Lilje DESY -MPY-

TESLA

Open Questions on Experiments

- Likely not complete....
 - Q-Slope/Bake
 - Is there a difference for baking EP or BCP cavities?
 - Is there a difference between BCP 1:1:1 and 1:1:2?
 - Is it really oxygen?
 - Is there information for other frequencies?
 - What more can we learn from samples?
 - Susceptibility
 - Critical currents
 - Surface analysis should profile into a depth of about 100 nm
 - EP has a much higher probability to achieve very high surface fields and higher Q.
 - This also true for low-beta structures!
 - There is the first indication that surface topology might play a role
 - Why?

Lutz Lilje DESY -MPY-

Theories

• Haven't changed much since SRF 2003...

Q-Slope at High Gradients

Theoretical Models \Leftrightarrow **Experiments**

SRF'2003 (11 th Workshop)

Q-Slope at High Gradients

Bernard Visentin

45

Magnetic Field Enhancement at G.B.

(J. Knobloch - SRF '99 - Santa Fe)

microstructure on RF surface(surface roughness - step height 10 μ m)magnetic field enhancement $\beta_m H$ normal conducting region if $\beta_m H > H_C$ factor $1.6 < \beta_m < 2.5$ (BCP)

 Image: Solution of the sector of t

(K. Saïto - PAC '2003 - Portland)

EP	:	$(H_{\rm C}/\beta_{\rm m}=223~{\rm mT})$	$\beta_m = 1$
BCP	:	$(H_{\rm C}/\beta_{\rm m} = 95 \ {\rm mT})$	$\beta_{\rm m}$ =2.34

Q-slope origin

the most dissipative G.B. \Rightarrow quench (equator)

electromagnetic code + thermal simulation $\Rightarrow Q_0(E_{acc})$

SRF'2003 (11 th Workshop)

Q-Slope at High Gradients

Comments (H - enhancement)

Explanations :

- Q-slope for BCP before baking (good simulation)
- > Q-slope improvement after baking (H_C^{\uparrow})
- \blacktriangleright better slope for EP after baking (β_m lower ~ 1)

Not consistent with :

- slope before baking for EP cavities
 - (same slope with β_m lower and H_C higher than BCP)
- Flat slope (and 40 MV/m) on BCP cavities C1-15 & C1-16 (roughness : 4 to 8 μm > 2 μm ⇒ high β_m)
- quench value unchanged for BCP after baking (in spite of $H_C \uparrow$)

47

Interface Tunnel Exchange

RF field on $\left\{ \begin{array}{cc} H^{||} \rightarrow Z^{H} \rightarrow R^{H} = R^{0} \left(1 + \gamma^{*} H^{2} / H_{c}^{2} + ... \right) & (Taylor series) \\ E^{\perp} & (causes electron emission) \rightarrow Z^{E} & (negligible for clean metal) \end{array} \right.$

Dielectric oxide layer on metal \rightarrow enhancement of Z^E by I.T.E. (localized states of Nb₂O_{5-y} and density of state of Nb) with electron diffusion at NbO_x - Nb₂O_{5-y} interface

 β^* : electric field enhancement factor convention nally fitted by: $R^E = R^0 (E^{\perp})^8$

I.T.E. \equiv quantitative description of Q-slope

ITE reduction by :

• smoothening surface (EP)

 $(\beta^* \downarrow \text{ and } E^\circ \uparrow)$

baking : Nb₂O_{5-y} vanished - better interface
 (reduction of localised states)

starting at E° onset value

(J. Halbritter - SRF '01 – Tsukuba) (IEEE Trans. on Appl. Supercond. <u>11</u>, 2001)

SRF'2003 (11 th Workshop)

Q-Slope at High Gradients

Comments (I.T.E.)

Explanations :

- > Q-slope improvement after baking ($Nb_2O_5 \downarrow$)
- \blacktriangleright better slope for EP after baking (smooth surface lower β^*)

Not consistent with :

➢ similar slopes (before baking) for EP and BCP cavities

(surface roughness and β^* are different)

- > unaltered slope after a surface re-oxidation ($Nb_2O_5 \uparrow 2$ months later)
- exceptional flat slopes on BCP cavities C1-15 & C1-16
 (in spite of roughness : 4 to 8 μm higher β*)

Q-Slope at High Gradients

Thermal Feedback

Temperature Dependence of Surface Resistance

(V. Kurakin - EPAC'94 - London)

(E. Haebel - TTF Meeting - 1998)

$$H_{s} \rightarrow \Delta T = R_{therm} \Delta P_{diss} \propto R_{s} H_{s}^{2} / 2 \rightarrow R_{s} (T) = R_{s} (T_{0}) + \frac{\partial R_{s}}{\partial T} \Delta T$$

$$P_{BCS} = A(\lambda_L, \xi_F, \ell) \frac{\omega^2}{T} e^{-\Delta/kT}$$

$$\Rightarrow Q_0 = G/R_S = (a - b.E_{acc}^2)$$

$$R_{BCS} = A(\lambda_L, \xi_F, \ell) \frac{\omega^2}{T} e^{-\Delta/kT}$$

fit parameter :

baking effect :

 $\frac{\partial R_s}{\partial T} (A \downarrow)$

 $\begin{cases} C \approx 1.10^{-15} (V / m)^{-2} \\ C \approx 2.10^8 \frac{\partial R_s}{\partial T} \end{cases}$

 $\approx 2.10^9$

(B.V. et al. SRF'99 - Santa Fe)

SRF'2003 (11 th Workshop)

Q-Slope at High Gradients

Energy Gap Dependence

Exponential variation

$$R_{s} = G/Q_{0} = R_{res} + A(\lambda_{L}, \xi_{F}, \ell) \frac{\omega^{2}}{T} e^{-\Delta/kT}$$

magnetic field dependence of Δ ?

 $\Delta(H) = \Delta(0) (1 - H^2/H_c^2)$ for T/T_C < 0.36

(A. Didenko - EPAC '96 - Sitges) (V. Mathur *et al.* - Phys. Rev. Let. 9, 374 - 1962)

B_C "fit factor"

 R_{res} , A, $\Delta(0)$ from $R_S(1/T)$ at low field (B.V. *et al.* - EPAC '98 - Stockholm) only rigorous and experimentally proved

for thin films

(normal state transition 2^{nd} order if $d/\lambda < 5^{1/2}$)

SRF'2003 (11 th Workshop)

Q-Slope at High Gradients

Granular Superconductivity

Grain Boundaries contribution to surface resistance?

(polycrystalline nature of Nb) - Grain Boundary = weak link (Josephson junction)

(B. Bonin and H. Safa - Superc. Sci. Tech. 4, 1991)

Theory valid for sputtered thin films

effect negligible for bulk niobium (grains ~ $10 \mu m$):

exception :

segregation of impurities located at grain boundaries

Difficulties to apprehend the baking as a way to clean G.B.

(low temperature - diffusion O)

Experiment on Grain Boundaries Specific Resistance

(H. Safa et al. – SRF '99 – Santa Fe)

SRF'2003 (11 th Workshop)

Q-Slope at High Gradients

Similarities EP / BCP

\geq	Q-Slope Fit	Slope before baking (EP = BCP)	Slope Improvement after baking	Slope after baking (EP < BCP)	No change after 2 m. air exposure	Exceptional Results (BCP)	Quench (EP > BCP)	BCP Quench unchanged after baking	Validity
Magnetic Field Enhancement	Y	$(\beta_m \text{ et } H_C \neq)$	Y (H _C ↑)	$\mathbf{Y}_{(\beta_m < ; H_C >)}$	-	$\sum_{(high \ \beta_m)}$	$\mathbf{Y}_{(\beta_m < ; H_C >)}$	N (H _C ↑)	Y
Interface Tunnel Exchange	Y (E ⁸)	Ν (β*≠)	$\mathop{\mathbf{Y}}_{(\operatorname{Nb}_2\operatorname{O}_{5-y}}\downarrow)$	Υ (low β*)	$(Nb_2O_{5-y}\uparrow)$	Ν (high β*)	-	-	Y
Thermal Feedback	Y (parab.)	Y	$\sum_{(R_{BCS} \downarrow R_{res} \uparrow)}$	N	-	Ν	-	-	N (coeff. C)
Magnetic Field Dependence of ∆	Y (expon.)	N (H _C ≠)	Y (H _C ↑)	Y (H _C >)	-	Ν	-	-	N (thin film)
Segregation of Impurities	-	N (≠ segreg.)	N (only O)	-	-	Y (cleaning)	-	-	Y

SRF'2003 (11 th Workshop)

Q-Slope at High Gradients

53

Summary on High field Q-slope and Baking

- Experimentally:
 - Baking is effective to cure the Q-degradation at high field
 - Especially EP cavities allow very high gradients
 - Etched cavities usually show breakdowns at lower fields
 - But there are exceptions from this!
 - Is there a difference in BCP 1:1:1 and 1:1:2?
 - Sample measurements show a change of the surface layer
 - Baking effect is clearly observed
 - Clear difference between etched and electropolished samples
 - · Indications that the surface topology can play a role
- Theoretically...
 - ... we are still looking for the 'experimentum crucis'

Lutz Lilje DESY -MPY-