An Investigation of the Properties of Grain Boundaries in BCP Nb for SRF Cavities

Presented by Peter J. Lee (UW-Madison) On behalf of David Larbalestier, Alex Squitieri, Anatolii Polyanskii, Matt Jewell, Bill Starch (UW-Madison) and Pierre Bauer, Cristian Boffo and Leo Bellantoni, Helen Edwards (FNAL)

FNAL-UW-Madison Collaboration

> Primary thrust:

- Better understanding of the effect of grain boundaries on the RF surface resistance using existing tools available at the Applied Superconductivity Center and FNAL
 - > Magneto-optics (shown here)
 - Surface analysis XPS and SAM
 - > Microscopy (shown here)
 - > Transport measurements.
 - > Specific Heat and magnetization

> Small scale samples fabricated from sheet at FNAL

From your background material: P. Kneisel

"Investigations on samples using "classical" surface analytical tools are useful, but it seems to be a "dream" for now to correlate the findings from such sample tests to cavity performance. After all, these methods use "outer" (valence) electrons, whereas the superconducting properties are determined by conduction electrons. Therefore, "superconducting" methods such as penetration depth, magnetization, pinning and susceptibility seem to be better suited to correlate sample features to cavity performance."

High Purity Nb Samples

BCP100,HT8005hr,BCP20

BCP80,HT8005hr,BCP20

("Texas")

(BCP2 + 1250C24hr+50mBCP)

MAGNETIZATION: AS RECEIVED AND AFTER BCP (100mm) & HT (800C/5hr)

Flux pinning due to cold working → strongly reduced after etching and heat treatment

Result consistent with recent data for BCP & HT samples (RRR300) from Casalbuoni:

 $B_{c,therm}(4.2 \text{ K})=142 \text{ mT} (\rightarrow 147 \text{ here})$ $B_{c2}(4.2 \text{ K})=267 \text{ mT} (\rightarrow 290 \text{ here})$

C. Boffo - FNAI

Weld Region: Grain Boundary Grooving

Flatbed Scanner
Images

Grain Boundary Groove in Weld Region (Weld)

Peter J. Lee – UW-ASC/FNAL Collaboration: Presented at "Pushing the Limits of RF Superconductivity," ANL, Sept. 23rd 2004

Weld vs BCP2 at same Magnification

BCP2 x 250

Weld vs BCP2 at × 1,000 magnification

BCP2: Reg. sheet, EDM cut, RRR=400

Magneto-Optical Imaging

- 1. Microscope
- 2. Cryostat
- 3. Solenoid (Magnet)
- 4. Sample and Indicator Film
- 5. Optical window

Slide by Matt Feldmann

Principle of Magneto optical (MO) measurement of B_z

Double Faraday rotation using in-plane magnetized YIG

Magneto-Optical Imaging

q Method of visualization of Magnetic Flux q Visualizes B_z in a plane above a supercondcutor

q Faraday Effect
q Rotation of the plane of polarization of light by a magnetic field

3D plot of B_z(x,y) above a superconductor **sheet**

Intergranular flux penetration in YBCO is common

Transport Current $J_c=1.3 \text{ MA/cm}^2$

Partial critical state

Induced Magnetization Currents

GBs are visible in Magnetizaton MO when: $J_c(GB) < J_c(grains)$

Even at I_c sample is not yet in the critical state!

Progressive flux penetration above H_{c1} in fine-grain Nb

BCP2: Reg. sheet, EDM cut, RRR=400 $H_{c1} \sim 60$ mT, ~38 mT with demagnetization

Progressive flux penetration above Hc1 in fine-grain Nb higher fields

Not quite full flux penetration to the center Macroscopic B_z flux pattern rather uniform

Large grain sample - some GBs appear after etching

Inverse Pole Figure indicates some texture

Light Microscope Depth Reconstruction

120 μm range at10 μm focus intervals

ImageJ with Extended Depth of Field plugin by Daniel Sage @ epfl.ch

B. Forster, D. Van De Ville, J. Berent, D. Sage, M. Unser, "Extended Depth-of-Focus for Multi-Channel Microscopy Images: A Complex Wavelet Approach," Proceedings of the Second 2004 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI'04), Arlington VA, USA, April 15-18, 2004, pp. 660-663.

Projection from light microscope height map

Peter J. Lee – UW-ASC/FNAL Collaboration: Presented at "Pushing the Limits of RF Superconductivity," ANL, Sept. 23rd 2004

FESEM Image: Height Reconstruction from tilt pair

Peter J. Lee – UW-ASC/FNAL Collaboration: Presented at "Pushing the Limits of RF Superconductivity," ANL, Sept. 23rd 2004

FESEM: detail of GB facets

Peter J. Lee – UW-ASC/FNAL Collaboration: Presented at "Pushing the Limits of RF Superconductivity," ANL, Sept. 23rd 2004

Inhomogeneous flux penetration after ZFC to 7K, then 57 mT, well above Hc1 ~ 48 mT

Flux has leaked to center, even as major flux fronts are only partially penetrated

#9-10 H=572 Oe, 27 Apr

Sequential flux maps in increasing H and t, then decrease H to zero

H_{c1} (7K) ~ 48mT (1.6 demagnetization factor ~30 mT)

H_{c2} ~120 mT

Peter J. Lee – UW-ASC/FNAL Collaboration: Presented at "Pushing the Limits of RF Superconductivity," ANL, Sept. 23rd 2004

MO image shows partial grain structure after magnetizing above H_{c2}

6K remanent MO image after 120 mT

Approximate 2D Current Streamlines

Current streamlines over GB map

Some GBs partially obstruct

Others benign

Green 3-20° Red 20-50° Black >50°

Peter J. Lee – UW-ASC/FNAL Collaboration: Presented at "Pushing the Limits of RF Superconductivity," ANL, Sept. 23rd 2004

Flux profile of remanent image after magnetizing to 120

ml

H=0 (FC in H=1200 Oe)

Reverse Gradient

Now mechanically alter surface: Partial

Light Microscope: EDF 3D reconstruction

Remanent Field after 120 mT at 7K

¹/₂ Polish: FESEM reconstruction

Complete Mech. Smoothed Surface

Remanent Field after 120 mT at 7K

Mechanically Smoothed Surface removed by Etch

Remanent Field after 120 mT at 7K

Alternative Profilometry II:

STEREO module of "AnalySIS" image analysis

Demo analysis performed by Andrew Cahill Soft Imaging System Corp. 12596 W. Bayaud Ave. Suite 300 Lakewood, CO 80228 web: <u>www.soft-imaging.com</u> email: aca@softimaging.com

Original Stereo Anaglyph used for analysis

"AnalysSIS" analysis

Summary

- Magneto-Optical Imaging shows that non-uniform flux penetration can occur along some grain boundaries
 - > Is this topological or chemical or both?
- Considerable variation in surface topology observed
 - > Local inhomogeneity: Orientation of facet surfaces
 - > Grain size variation across weld region
 - Grooved grain boundaries in weld region and grain-growth heat treatment.
- Software tools enable quantification of surface topology over large areas.

Appendix I: Sample Summary

Sample	Clean	Etch 1	НТ	Etch 2	RRR
RFNB_BULK1_ Weld_ W_HT1 _ RRR _1,2,3 Taken from WELD	2x(US-M90+UPW rinse until 12MΩ) dried in lam N2	BCP 1:1:2, 100 min, rinse in UPW ~15-18 C	800 C 5 hr 10 ⁻⁶ T	BCP 1:1:2, 20 min, rinse in UPW T=17.5C	~350
RFNB_BULK2_ BCP2 _S_HT1 _ RRR _1,,10 Reg. sheet, EDM cut	2x(US-M90+UPW rinse until >10MΩ) dried in lam N2	BCP 1:1:2, 80 min, rinse in UPW ~15 C	800C 5hr 10 ⁻⁶ T plateau: 24hr @ 400C	BCP 1:1:2, 20 min, rinse in UPW ~15C	~400
RFNB_BULK2_BCP2_S_HT1 _MO_1,,5 RFNB_BULK2_BCP2_S_HT1 _MAG_1,,3 RFNB_BULK2_BCP2_S_HT1 _BC_1,,4 RFNB_BULK2_BCP2_S_HT1 _M_1,,3 Reg. sheet, EDM cut					
RFNB_BULK2_BCP2_S_HT1 _RRR_? RFNB_BULK2_BCP2_S_HT1 _MO_?	Same as above + HT and etch to grow extra large grains		1250C,24hr,10 ⁻⁷ T (JLAB)	BCP 1:1:2, 50 min, rinse in UPW ~15C	260

Appendix II: Storage and Transport

All BCP2 samples are held in sterile PE tubes with dry, filtered N₂

Peter J. Lee – UW-ASC/FNAL Collaboration: Presented at "Pushing the Limits of RF Superconductivity," ANL, Sept. 23rd 2004