G. Wu, H. L. Phillips

Jefferson Lab, VA, 23606

- Thin film coating activities in SRF laboratories.
- Current coating processes for niobium: The strength and the weakness.
- Alternative coating processes.
- Materials other than niobium.

Energetic Condensation (Deposition)

Thin film coating activities in SRF laboratories

- CERN, Nb/Cu Sputtering, biased Sputtering
- ACCEL/Cornell, Nb/Cu Sputtering, biased Sputtering
- INFN/Legnaro, new materials/varieties of processes
- Los Alamos, testing of MgB2
- Cornell/York, epitaxial magnetron sputtering
- Peking University, Nb/Cu Biased Sputtering
- Australia National University, PbSn/Cu
- INFN/Roma, Cathodic Arc Process
- Andrzej Soltan Institute, Cathodic Arc Process
- JLAB, Energy-Controlled ECR Plasma
- Alameda, Coaxial energetic arc deposition
- SANDIA, Pulsed ion ablation deposition

Physics Dept. at Cornell/York

Magnetron Sputtering

L. Hand, W. Frisken

- Impurities need to be very low
- Smooth, oxidation free surface to preserve high H_{c1}
- Low grain density and defect free grains reduce vortex trapping.

Sample	H _{el} (1.9K) [Oe]	$E_{av}[MeV/m]$
Pure Nb[9]	1676	39.9
DESY	1653 +/- 70	39.4
CERN	1471 +/- 60	35.0
Film 19	1454 +/- 80	34.6
Film 30	1946 +/- 50	46.3

Peking University

QWR Nb/Cu Cavity for CIAE 4-5MV/m at 4.2K $Q_0 < 10^9$

Nb Sputtering System, three target capability

Peking University

Biased Magnetron Sputtering

- Bias voltage was applied, with which the film structures are significantly improved.
- An intermediate layer of NbN was inserted, which was prepared by reactive sputtering.

Tc measurement of film Nb samples from Peking University

With bias

Australia National University

Electroplating

PbSn (96:4)

- Low cost oriented.
- $H_{sh} = 1200 \text{ Oe}$
- E_{pk} = 19-21 MV/m, limited by field emission

Solderon MSA plating solution for PbSn (96:4)

INFN/Roma and Andrzej Soltan Institute

Cathodic Arc Deposition

- No working gas (UHV)
- Ionized niobium (up to 95%)
- High ion energy (10-100eV)
- Excellent adhesion
- High purity
- Possible to apply bias and magnetic field
- Chemical process capable (i.e. NbN)

Linear, Planar arc systems

Macro particle filters

INFN/Roma and Andrzej Soltan Institute (cont.)

- RRR 20-100
- SC transition width comparable to bulk
- Low field Rs no worse than bulk
- Columnar growth but densely packed.

SEM pictures of film surface with/without macro particle filter

a) b) Bam301kV 260E3 2064/01 BE

SEM pictures of film structure

SANDIA/JLab

Pulsed Ion Beam Ablation Deposition

Alameda Applied Science Co./JLab

Coaxial Energetic Deposition (CED)

--A Vacuum arc process

- Trigger-less arc system
- Unique macro-particle filter
- Capable of compound material

Fig. 3. Picture of one of the CED deposition system at AASC.

Jefferson Lab

Energy-Controlled ECR Plasma

- Niobium Ion Energy is around 63 eV, and controllable.
- Deposition Energy of 114 eV yields better film quality for sapphire substrate.
- Epitaxial growth of niobium on sapphire
- Bias voltage affects Nb film crystal orientation

TEM cross section view – JLNB-CU-60

Electron diffraction pattern Crystal orientation not very aligned.

TEM cross section view – JLNB-CU-70

TEM cross section view – JLNB-CU-80

Jefferson Lab (cont.)

TEM cross section view with Electron diffraction pattern at corner

Some samples of the simulation by J. Pomeroy

Jefferson Lab/Cornell

No working gas like argonSHigh vacuum means reduced
impuritiesSControllable "single" deposition
energy,SNear 90-degree deposition angleCExcellent bondingSNo macro particlesS

- Faster rate (Conditional)
- Smooth surface (also shown in Cu hyperthermal deposition)

500MHz Deposition System

Jefferson Lab/Cornell (cont.)

Planned Explorative Studies: Nb₃Sn, MgB₂

ECR plasma assisted

- Serial process: Nb, then Sn
- Parallel process: Nb, Sn within the same plasma
- MgB₂ : Similar processes?

	Nb	Nb ₃ Sn	MgB ₂
Т _с (К)	9.27	18	39
B _{sh} (Oe)	1800	4000 (or 1033?)	
R_{s} (n Ω) _{4.2K}	500	15	

Process(Nb) comparison Table 1. Comparison of niobium films on sapphire by several coating processes

	1000000000		RRR	Crystallization measured	Film structure by
Coating process	T _c (K)	$\Delta T_{c}(K)$	***	by (X-ray diffraction)	XTEM analysis
states and states and an end				Range from oriented to	Columnar growth
Magnetron Sputtering	9.5	0.3	5-10	less oriented, depends on	Some voids present at
		10000		deposition angle.	high deposition angle
Biased Magnetron	÷		5.e	a kana Printena dan kana kana ang kana kana kana kana kan	
Sputtering	9.6	>1K	7-15	N/A	Columnar growth
Vacuum Arc			21	Preferred orientation,	Columnar growth,
deposition *	9.25	< 0.02	20-100	other orientations exist	densely packed
Energetic Vacuum			3)		Epitaxial in some
deposition **	9.1	0.07	50	Perfectly oriented	films.

* T_c measured by different process

** Sample made at deposition energy around 123 eV on sapphire.

*** RRR as measured on sapphire substrate

Weakness

- Magnetron sputtering: impurity + low energy
- •Arc deposition: macro-particle
- ECR plasma: thickness uniformity(maybe)
- All: inappropriate for complex geometry, and more H than necessary

Alternative coating processes

Chemical Coating Processes

- Niobium compound
 - NbF5 234 °C
 - NbCl5 250 °C
 - NbBr5 360 °C
 - NbBr3 400 °C
- Vapor phase
 - Chemical vapor deposition(CVD),
 - plasma-assisted CVD,
 - Photo-enhanced CVD,
 - Laser-assisted CVD.
- Liquid phase
 - Electroplating

Thin film materials other than niobium

NbN, NbTiN, Nb3Sn

Cathodic arc

Magnetron sputtering

Vapor diffusion

Physical chemical vapor deposition

■MgB2

Pulsed laser deposition

Physical chemical vapor deposition

Ion beam ablation deposition

Electroplating

MBE

Thin film in next few years

- Niobium cavities from varieties of processes.
- Correlate surface physics with the superconducting properties, especially R_s
- Path to the high field Q-drop free coating should be clearer
- Alternative processes and material will likely emerge.

Acknowledgement

- S. Calatroni, CERN
- H. Padamsee, ACCEL/Cornell
- T. Tajima, Los Alamos
- L. Hand, Cornell/York
- K. Zhao, J. Hao, F. Zhu, Peking University
- N. Lobanov, Australia National University
- R. Russo, S.Tazzari, INFN/Roma, Andrzej Soltan Institute
- M. McFarland, A. Gehran, Alameda, Coaxial energetic arc deposition
- T. Renk, SANDIA, Pulsed ion ablation deposition