New Geometries Overview (elliptical cavities) J. Sekutowicz, DESY

- 1. Criteria for the inner-cell optimization
- 2. Multi-cell structures; Number of cells
- 3. Elliptical cavities ß=1
- 4. Elliptical cavities ß<1
- 5. Summary

In this presentation I will report about the work of many colleagues. I want to express my thanks to:

D. Barni	S. Noguchi
I. Ben-Zvi	H. Padamsee
R. Calaga	C. Pagani
E. Chiavieri	P. Pierini
G. Ciovati	D. Proch
E. Haebel	K. Saito
W. Hartung	V. Shemelin
P. Kneisel	O. Takeda
S. Li	T. Tajima
A. Mosnier	B. Visentin
	E. Zaplatin

RF parameters :

- FM : (R/Q), G, E_{peak}/E_{acc} , B_{peak}/E_{acc} , k_{cc}
- HOM : k_, k_

Geometry :

- iris ellipsis : half-axis h_r , h_z •
- iris radius : r_i
- equator ellipsis : half-axis h_r, h_z +

Criteria	RF-parameter	Improves when	Cavity example
Operation at		r. 📕	TESLA,
bigh gradient	E _{peak} /E _{acc}	'' 🕂	HG CEBAF-12
nigh gradient	D _{peak} / L _{acc}	Iris, Equator shape	GeV
Low cryogenic	(B/Q) ·G	r _i 📕	LL CEBAE-12 GeV
losses		Equator shape	
Low HOM impedance	k⊥, k∥ ↓	r _i	B-Factory RHIC cooling

We see here that r_i is a "powerful knob" to trim the RF-parameters

Why for smaller aperture (r_i)

- (R/Q) is bigger
- E_{peak}/E_{acc} , B_{peak}/E_{acc} is lower?
- $\mathsf{E}_{\mathsf{acc}}$ is higher at the same stored energy in the cell

Example: f = 1.5 GHz

A. Mosnier, E. Haebel, SRF Workshop 1991

In addition to the iris radius :

• B_{peak}/E_{acc} (and G) changes vs. Equator shape

Both cells have the same: f, (R/Q), and iris radius

We know that a smaller aperture makes FM :

- (R/Q) higher
- B_{peak}/E_{acc} , E_{peak}/E_{acc} lower

but unfortunately a smaller aperture makes:

- HOMs impedances $(k \perp, k \parallel)$ higher
- cell-to-cell coupling ($k_{\rm cc}$) weaker

(+)

Inner cells parameter			new	new				new	new
		CEBAF Original Cornell ß=1	CEBAF -12 High Gradient ß=1	CEBAF -12 Low Loss ß=1	TESLA ß=1	SNS ß=0.61	SNS ß=0.81	RIA ß=0.47	RHIC Cooler ß=1
f _o	[MHz]	1448.3	1468.9	1475.1	1278.0	792.8	792.8	793.0	683.0
f _m	[MHz]	1497.0	1497.0	1497.0	1300.0	805.0	805.0	805.0	703.7
k _{cc}	[%]	3.29	1.89	1.49	1.9	1.52	1.52	1.52	2.94
E _{peak} /E _{acc}	-	2.56	1.96	2.17	1.98	2.66	2.14	3.28	1.98
B_{peak}/E_{acc}	[mT/(MV/m)]	4.56	4.15	3.74	4.15	5.44	4.58	6.51	5.78
R/Q	[Ω]	96.5	112	128.8	113.8	49.2	83.8	28.5	80.2
G	[Ω]	273.8	266	280	271	176	226	136	225
R/Q*G	[Ω*Ω]	26421	29792	36064	30840	8659	18939	3876	18045
k⊥ (σ _z =1mm)	[V/pC/cm ²]	0.22	0.32	0.53	0.23	0.13	0.11	0.15	0.02
$k_{\parallel}(\sigma_z=1mm)$	[V/pC]	1.36	1.53	1.71	1.46	1.25	1.27	1.19	0.85

There are two new cavities proposed recently as a replacement for the TESLA 9-cell structures (no model has been built, further optimization will follow):

LL-ILC **Re-entrant** Optimized for: Optimized for: B_{peak}/E_{acc} B_{peak}/E_{acc} & (R/Q)*G

		Re-entrant Cornell ß=1	Low Loss DESY/KEK ß=1		
f _o	[MHz]	1273.0	1281.5		
f _π	[MHz]	1300.0	1300.0		
k _{cc}	[%]	2.08	1.43		
E _{peak} /E _{acc}	- 2.20		2.17		
B _{peak} /E _{acc}	[mT/(MV/m)]	3.9	3.7		
R/Q	[Ω]	120	130		
G	[Ω]	277	280		
R/Q*G	[Ω*Ω]	33240	36400		
k_{\perp} (σ_z =1mm)	[V/pC/cm ²]	0.23	0.38		
k _∥ (σ _z =1mm)	[V/pC]	1.45	1.72		

2. Multi-cell structures; Number of cells

Why do we need to use multi-cell structures ?

- To increase real estate gradient (better filling factor)
- To reduce costs (less auxiliaries: vessels, tuners, FPCs)

There are 3 limitations in N / structure :

- Field flatness of the FM : N vs. k_{cc}
- Trapping of HOMs

- : N vs. achievable HOMs Qext
- FPC capability (relaxed for some ER operations)
- : N vs. P_{input}

2. Multi-cell structures; Number of cells

Field flatness of the FM: N vs. k_{cc}

The measure of the field flatness sensitivity to frequency errors in a multi-cell cavity is: $a_f = (N)^2 / (\beta \cdot k_{cc})$

	Original Cornell N = 5	High Gradient N =7	Low Loss N =7	TESLA N=9	SNS ß=0.61 N=6	SNS ß=0.81 N=6	RIA ß=0.47 N=6	RHIC N=5
a _f	1489	2592	3288	4091	3883	2924	5040	850
							ノ	

Many years of experience with: heat treatment, chemical treatment, handling and assembly allows one to preserve tuning of cavities, even those with bigger N and weaker k_{cc}

For the TESLA cavities : field flatness is better than 95 %

2. Multi-cell structures; Number of cells, cont.

The HOM trapping mechanism is similar to the FM field profile unflatness mechanism:

- weak HOM cell-to-cell k_{cc,HOM} coupling
- difference in HOM frequency of end-cell and inner-cell

In the example from the previous slide:

2. Multi-cell structures; Number of cells, cont.

To untrapp HOMs we can:

open both irises of inner cells and end-cells (bigger k_{cc.HOM}) 0

Example: the RHIC cavity for the cooling:

Monopole mode $k_{cc'HOM} = 6.7 \%$

18

2. Multi-cell structures; Number of cells, cont.

 tailor end-cells to equalize HOM frequencies of inner- and end-cells (works for very few modes)

Example: TESLA cavity, which has two different end-cells

The lowest mode in the passband f_{HOM} = 2382 MHz

The highest mode in the passband $f_{HOM} = 2458 \text{ MHz}$

 we can also split a long structure in weakly coupled subsections to have space for HOM couplers in mid of a long structure

Example: 2x7-cell instead of 14-cell structure

2453 MHz, (R/Q) = 230 Ω

2451 MHz, $(R/Q) = 212 \Omega$

e-m fields at HOM couplers positions

less cells in a structure helps always to reach low Qs of HOMs

2. Multi-cell structures; Interconnection

Towards the higher real estate gradient

- It is an important issue for long machines based on SRF: ILC
- It is related to the end-groups (end-cells) geometry
- We are approaching limit of 40 MV/m in multi-cell cavities
- Each "MV/m " near this limit is very expensive

Example: TESLA 800 TDR2001

Active length: 1036 mm Interconnection: 283 mm

The effective gradient drops by 21.5% from 35 MV/m to 27.5 MV/m

2. Multi-cell structures; Interconnection, cont.

How can one improve the filling factor ?

• By using short interconnections with "step" in diameter:

- a) no FM coupling between neighboring cavities
- b) fixed standing wave position of the dangerous dipoles (3-rd passband) at HOM coupler location.

Example cont.: TESLA 800 TDR2001 Active length: 1036 mm Here, the effective gradient drops by 16.2 % from 35 MV/m to 29.3 MV/m

and TESLA can be shorter by 1.8 km !!!!!!

Interconnection: 200 mm

- 2. Multi-cell structures; Interconnection, cont.
- we can go one step further and use weakly coupled pairs of 9-cell structures

Interconnection: 115 mm

Example cont.: TESLA800 TDR2001

When we apply both interconnections modification:

the effective gradient drops by 13.2 % from 35 MV/m to 30.4 MV/m and TESLA800 can be shorter by **2.7 km !!!!!**

3. Elliptical cavities ß=1

"Ranking list" of multi-cell cavities ß=1

Criterion	Structure	Best parameter	Weakest parameter	Comments
E _{acc}	HG: 1.5 GHz, N=7 TESLA: 1.3 GHz, N=9	E _{peak} /E _{acc} = 1.96 E _{peak} /E _{acc} = 1.98	Filling factor	Designed for I _{beam} < 10 mA, <i>Cornell 100 mA</i>
RE E _{acc}	2x9 TESLA: 1.3 GHz, N= 18	Filling factor E _{peak} /E _{acc} = 2.0	Field flatness preservation	New FPC design: 0.8 MW
P _{loss}	LL: 1.5 GHz, N= 7	B _{peak} /E _{acc} = 3.7 (R/Q)*G	Not easy to clean, HOM damping	Designed for I _{beam} < 1 mA
Z _{HOM}	RHIC: 0.7 GHz, N= 5	Very low: k⊥, k _∥ E _{peak} /E _{acc} = 1.98	Cryogenic losses	First multi-cell for I _{beam} ≈ 2 A

(only in the list when Cu or Nb model has been built). New designs marked in yellow

4. Elliptical cavities ß<1

These cavities are not operated at the limits of the Nb properties.

The cell-geometry makes some of them difficult to pre-tune and sensitive to the Lorentz force.

		JAERI KEK	APT LANL	JAERI KEK	TRASCO INFN	SNS JLAB	SNS JLAB	RIA MSU/JLAB	ASH Saclay / Orsay
f _π	[MHz]	600	700	972	704	805	805.0	805.0	700
ß	-	0.604	0.64	0.6	0.85	0.61	0.81	0.47	0.65
Ν	-	5	5	9	5	6	6	6	5

4. Summary

- The process of cavity design is well understood
- The new geometries are helpful to push the performance. However when we improve one chosen parameter (by 10-20%) some of them degrade more or less by the same amount
- For the ILC linac we should not waste MV/m's having poor filling factor.
- If the limitation is not E_{peak} (not all of us agree with this statement) then new cell geometry should have B_{peak}/E_{acc} as low as possible. We have two candidates (re-entrant and LL, others new shapes are welcome)
- I think, that there is much more potential to push the SRF performance in using better Nb and better preparation methods (see progress in the performance of the TESLA cavities)

