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New Geometries Overview
(elliptical cavities)

J. Sekutowicz, DESY

1.  Criteria for the inner-cell optimization

4.  Elliptical cavities ß<1
3.  Elliptical cavities ß=1
2.  Multi-cell structures; Number of cells

5.  Summary
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1.  Criteria for the inner-cell optimization

RF parameters :
• FM      :    (R/Q),  G,  Epeak/Eacc ,  Bpeak/Eacc ,  kcc

• HOM   :    k ┴ , k ║

Geometry :

• iris ellipsis         : half-axis hr , hz

• iris radius  : ri

• equator ellipsis : half-axis hr , hz
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1.  Criteria for the inner-cell optimization, cont.

B-Factory
RHIC cooling

LL CEBAF-12 GeV

TESLA,           
HG CEBAF-12 

GeV

Cavity example

rik ┴ , k ║
Low HOM 
impedance

ri

Equator shape
(R/Q) ·G   Low cryogenic 

losses

ri

Iris, Equator shape

Epeak / Eacc                 
Bpeak / Eacc

Operation at 
high gradient

Improves 
whenRF-parameterCriteria

We see here that ri is a “powerful knob” to trim the RF-parameters
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Why for smaller aperture (ri)
•   (R/Q)  is bigger
• Epeak/Eacc , Bpeak/Eacc  is lower ?

ri = 40 mm             ri = 20 mm 

Eacc  is higher at the same stored energy in the cell
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1.  Criteria for the inner-cell optimization, cont.



Workshop on  „Pushing the limits of SRF“,  ANL, September 22-24, 2004. 6

A. Mosnier, E. Haebel, SRF Workshop 1991

Example:
f = 1.5 GHz

1.  Criteria for the inner-cell optimization, cont.
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In addition to the iris radius : 

• Bpeak/Eacc (and G)  changes vs. Equator  shape
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1.  Criteria for the inner-cell optimization, cont.
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Similar :        Epeak/Eacc changes  vs.  Iris shape
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1.  Criteria for the inner-cell optimization, cont.
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We know that a smaller aperture makes FM :

• (R/Q)  higher

• Bpeak/Eacc  , Epeak/Eacc lower (+)

but unfortunately a smaller aperture makes:

• HOMs impedances (k ┴ , k ║)  higher
• cell-to-cell coupling ( kcc )  weaker

(-)

1.  Criteria for the inner-cell optimization, cont.
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(R/Q)        =  86 Ω 
Bpeak / Eacc =  4.6 mT/(MV/m)
Epeak / Eacc =  3.2

(R/Q) = 152 Ω 
Bpeak / Eacc  = 3.5 mT/(MV/m)
Epeak / Eacc  = 1.9

1.  Criteria for the inner-cell optimization, cont.
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(R/Q)        =  86 Ω 
Bpeak / Eacc =  4.6 mT/(MV/m)
Epeak / Eacc =  3.2

(R/Q) = 152 Ω 
Bpeak / Eacc  = 3.5 mT/(MV/m)
Epeak / Eacc  = 1.9

1.  Criteria for the inner-cell optimization, cont.
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0.851.191.271.251.461.711.531.36[V/pC]k║ (σz=1mm)

0.020.150.110.130.230.530.320.22[V/pC/cm2]k┴ (σz=1mm)

18045387618939865930840360642979226421[Ω*Ω]R/Q*G

225136226176271280266273.8[Ω]G

80.228.583.849.2113.8128.811296.5[Ω]R/Q

5.786.514.585.444.153.744.154.56[mT/(MV/m)]Bpeak/Eacc

1.983.282.142.661.982.171.962.56-Epeak/Eacc

2.941.521.521.521.91.491.893.29[%]kcc

703.7805.0805.0805.01300.01497.01497.01497.0[MHz]fπ

683.0793.0792.8792.81278.01475.11468.91448.3[MHz]fo

RHIC
Cooler

ß=1

RIA

ß=0.47

SNS

ß=0.81

SNS

ß=0.61

TESLA

ß=1

CEBAF -12
Low
Loss
ß=1

CEBAF -12
High

Gradient
ß=1

CEBAF
Original
Cornell

ß=1

1.  Criteria for the inner-cell optimization, cont.

new new newnewInner cells parameter
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There are two new cavities proposed recently as a replacement for the TESLA 9-cell 
structures (no model has been built, further optimization will follow):

1.721.45[V/pC]k║ (σz=1mm)

0.380.23[V/pC/cm2]k┴ (σz=1mm)

3640033240[Ω*Ω]R/Q*G

280277[Ω]G

130120[Ω]R/Q

3.73.9[mT/(MV/m)]Bpeak/Eacc

2.172.20-Epeak/Eacc

1.432.08[%]kcc

1300.01300.0[MHz]fπ

1281.51273.0[MHz]fo

Low Loss
DESY/KEK

ß=1

Re-entrant
Cornell

ß=1

Re-entrant

1.  Criteria for the inner-cell optimization, cont.

LL-ILC

Optimized for:
Bpeak/Eacc

Optimized for: 
Bpeak/Eacc  & (R/Q)*G



Workshop on  „Pushing the limits of SRF“,  ANL, September 22-24, 2004. 14

2.  Multi-cell structures; Number of cells

Why do we need to use multi-cell structures ?

• To increase real estate gradient (better filling factor)

• To reduce costs (less auxiliaries: vessels, tuners, FPCs)

There are 3 limitations  in  N / structure :

• Field flatness  of the FM :  N   vs.  kcc

• Trapping of HOMs         :  N   vs. achievable  HOMs Qext

• FPC capability :  N   vs. Pinput 
( relaxed for some ER operations)
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2.  Multi-cell structures; Number of cells

Field flatness of the FM :   N   vs.  kcc

The measure of the field flatness sensitivity to frequency errors in 
a multi-cell cavity is: af = (N)2 ̸(ß·kcc)

Many years of experience with: heat treatment, chemical treatment, handling 
and assembly allows one to preserve tuning of cavities, even those with bigger 
N and weaker kcc

For the TESLA cavities :  field flatness is better than 95 %

8505040292438834091328825921489af

RHIC

N=5

RIA
ß=0.47

N=6

SNS
ß=0.81

N=6

SNS
ß=0.61

N=6

TESLA

N=9

Low
Loss
N =7

High
Gradient

N =7

Original
Cornell
N = 5
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Trapping of HOMs:  N vs. achievable  HOMs Qext

2.  Multi-cell structures; Number of cells, cont.

no e-m fields at HOM couplers positions

e-m fields at HOM couplers positions

N = 17

N = 13

N  =  9

N  =  5
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The HOM trapping mechanism is similar to the FM field profile unflatness 
mechanism:

• weak HOM cell-to-cell kcc,HOM coupling
• difference in HOM frequency of end-cell and inner-cell

2.  Multi-cell structures; Number of cells, cont.

In the example from the previous slide:

f = 2385 MHz f = 2415 MHz

That is why they 
hardly resonate 

together
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2.  Multi-cell structures; Number of cells, cont.

To untrapp HOMs we can:

• open both irises of inner cells and end-cells (bigger kcc,HOM)

Example: the RHIC cavity for the cooling:

fHOM = 1394 MHz fHOM = 1407 MHz

fHOM = 1403 MHz

Monopole mode kcc,HOM = 6.7 %
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• tailor end-cells to equalize HOM frequencies of inner- and 
end-cells (works for very few modes)

2.  Multi-cell structures; Number of cells, cont.

Example: TESLA cavity, which has two different end-cells

The lowest mode in the passband 
fHOM = 2382 MHz

The highest mode in the passband 
fHOM = 2458 MHz
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2.  Multi-cell structures; Number of cells, cont.

• less cells in a structure helps always to reach low Qs of HOMs

• we can also split a long structure in weakly coupled subsections
to have space for HOM couplers in mid of a long structure

Example: 2x7-cell instead of 14-cell structure

2451 MHz,  (R/Q) = 212 Ω

2453 MHz,  (R/Q) = 230 Ω

e-m fields at HOM couplers positions
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2.  Multi-cell structures; Interconnection

Towards the higher real estate gradient

• It is an important issue for long machines based on SRF:  ILC
• It is related to the end-groups (end-cells) geometry

Example:  TESLA 800 TDR2001

• We are approaching limit of 40 MV/m in multi-cell cavities
• Each “MV/m ” near this limit is very expensive

Active length:    1036 mm
Interconnection:  283 mm

The effective gradient drops by 21.5%  
from 35 MV/m  to  27.5 MV/m
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2.  Multi-cell structures; Interconnection, cont.

How can one improve the filling factor ?

• By using short interconnections with “step” in diameter:
a)  no FM coupling between neighboring cavities
b) fixed standing wave position of the dangerous dipoles (3-rd passband) at 

HOM coupler location. 

Example cont.:  TESLA 800 TDR2001
Active length:    1036 mm

Interconnection:  200 mm

Here, the effective gradient drops by 16.2 %  
from 35 MV/m  to  29.3 MV/m

and TESLA can be shorter by  1.8 km !!!!!!
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• we can go one step further and use weakly coupled pairs of    
9-cell structures

2.  Multi-cell structures; Interconnection, cont.

Interconnection:  115 mm

the effective gradient drops by 13.2 %  from 35 MV/m  to  30.4 MV/m
and

TESLA800 can be shorter by  2.7 km !!!!!!

Example cont.:  TESLA800  TDR2001

When we apply both interconnections modification:   
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3.  Elliptical cavities ß=1

“Ranking list” of multi-cell cavities ß=1

ZHOM

Ploss

RE Eacc

Eacc

Comments
Weakest
parameter

Best 
parameter

StructureCriterion

(only in the list when Cu or Nb model has been built). New designs marked in yellow

HG:       1.5 GHz, N=7HG:       1.5 GHz, N=7
TESLA: 1.3 GHz, N=9

Epeak/Eacc= 1.96
Epeak/Eacc= 1.98 Filling factor

Designed for 
Ibeam < 10 mA,
Cornell 100 mA

2x9 TESLA: 
1.3 GHz, N= 18

Filling factor
Epeak/Eacc= 2.0

Field flatness
preservation

New FPC 
design: 0.8 MW

LL:      1.5 GHz, N= 7 Bpeak/Eacc= 3.7
(R/Q)*G

Not easy to clean,      
HOM damping

Designed for 
Ibeam < 1 mA

RHIC:   0.7 GHz, N= 5
Very low: k┴ , k║

Epeak/Eacc= 1.98
Cryogenic losses First multi-cell 

for Ibeam ≈ 2 A
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700805.0805.0805704972700600[MHz]fπ

ASH

Saclay / Orsay

RIA

MSU/JLAB

SNS

JLAB

SNS

JLAB

TRASCO

INFN

JAERI

KEK

APT

LANL

JAERI

KEK

4.  Elliptical cavities ß<1

0.650.470.810.610.850.60.640.604-ß

56665955-N

These cavities are not operated at the limits of the Nb properties. 

The cell-geometry makes some of them difficult to pre-tune and sensitive to 
the Lorentz force.

They are very often an alternative to non-elliptic cavities (spoke). The 
advantage one can see here is usually big aperture (~2 x spoke aperture) for 
the proton and ion beams.
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4.  Summary

• The new geometries are helpful to push the performance. However when we 
improve one chosen parameter (by 10-20%) some of them degrade more or 
less by the same amount

• For the ILC linac we should not waste MV/m’s having poor filling factor. 

• If the limitation is not Epeak (not all of us agree with this statement) then new 
cell geometry should have Bpeak/Eacc as low as possible. We have two 
candidates (re-entrant and LL, others new shapes are welcome )

• I think, that there is much more potential to push the SRF performance in 
using better Nb and better preparation methods (see progress in the 
performance of the TESLA cavities) 

• The process of cavity design is well understood 


